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1. INTRODUCTION 

With data-rich technologies and data-heavy areas of biomedical science entering the 

clinical arena, physicians are being inundated with a staggering volume of data requiring more 

sophisticated interpretation while being expected to perform more efficiently. In other words, 

the ever-growing complexity of medicine now exceeds the capacity of the human mind. A 

potential solution is machine learning (ML) – a subfield of artificial intelligence – that can 

support clinical decision-making to enhance every stage of patient care. 

ML algorithms can account for non-linear associations between myriads of predictors 

and outcomes; thus, their utilization will inevitably lead to improved predictive models. As ML-

based tools permeate into clinical cardiology, they will facilitate the scheduling and 

protocolling of medical tests and appointments, help remote monitoring of patients through 

wearable devices, enhance the interpretation of electrocardiograms (ECGs), enable automated 

measurements from echocardiograms, computed tomography, and cardiac magnetic resonance 

scans, perform risk stratification using every piece of data available in the patient’s chart, and 

guide therapeutic decisions. Designed, validated, and implemented appropriately, ML models 

will help us acquire, interpret, and synthesize healthcare data from diverse sources and place it 

at our fingertips. 

ML also holds the promise to revolutionize heart failure (HF) care and ultimately 

improve outcomes in this patient population. ML has been leveraged in an attempt to facilitate 

the diagnosis of HF, the classification of HF patients into subgroups requiring different 

treatment strategies, and the prognostication of HF patients in order to deliver more tailored 

care. ML techniques can be applied in other aspects of the management of HF as well. For 

instance, they can predict whether the patient will adhere to the prescribed medications or 

identify HF patients at risk of depression. ML can also be employed to predict left ventricular 

(LV) filling pressures or to protect cardiovascular implantable electronic devices from 

cyberattacks. Although these are only cherry-picked use cases, they make it apparent that ML 

can be successfully applied for countless prediction tasks related to HF. 

Accordingly, the potentials of ML were demonstrated in this thesis through three studies 

aiming to improve the prognostication of HF patients. 
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2. OBJECTIVES 

1. Applying topological data analysis to integrate echocardiographic features of left 

ventricular structure and function into a patient similarity network 

A diagnostic imaging protocol can produce numerous parameters, each with its 

strengths and limitations. However, due to the lack of unanimity on the combination and use of 

these parameters to depict a single patient or a group of patients with similar characteristics, 

there is a paramount need to develop a staging method that can integrate multiple tests and 

diagnostic variables at the point of care. Accordingly, we applied topological data analysis 

(TDA) to detect patient similarity patterns using a cross-sectional multi-parametric 

echocardiographic data set. We subsequently investigated the prognostic value of the 

topological network and explored whether the longitudinal course of the disease could be 

tracked along the topological map to assess the risk of cardiac events in an index patient. 

2. Designing and evaluating a machine learning-based risk stratification system to 

predict all-cause mortality of patients undergoing CRT implantation 

Cardiac resynchronization therapy (CRT) decreases morbidity and mortality in 

appropriately selected patients, yet some patients show limited or no response to therapy. Since 

this discovery, interest has spiked in attempting to accurately risk-stratify this patient 

population; however, conventional statistics-based risk scores have achieved only modest 

performance. Therefore, we implemented an ML-based risk stratification system to predict all-

cause mortality from pre-implantation parameters of patients undergoing CRT implantation.  

3. Exploring the sex-specific differences and similarities in the predictors of mortality 

among patients undergoing CRT implantation 

In HF with reduced ejection fraction (HFrEF), several studies have highlighted sex-

related differences that involve multiple aspects of the syndrome. Although sex disparities are 

also remarkable in the accessibility to HF device therapy, including CRT, women are more 

likely to respond favorably and derive a greater survival benefit from CRT implantation. 

Nonetheless, the sex-related differences in short- and long-term outcomes and the varying 

importance of different predictors are still scarcely explored in this patient population. 

Motivated by this gap in knowledge, we aimed to explore the sex-specific differences and 

similarities in the predictors of mortality using advanced ML-based approaches.  
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3. METHODS 

3.1 Study population and methods of investigating interpatient similarities using 

topological data analysis 

3.1.1 Outline of the study protocol 

Our study consisted of two parts. First, we used a primary cohort (including patients 

from a retrospective study and two prospective registries) to create a cross-sectional 

representation of patients across different stages of cardiac disease. After we developed a 

topological network from the retrospective study, we added the data from the prospective 

registries to validate the persistence and stability of network topology. Second, we tested 

whether we could perform personalized predictions for a previously unseen group of patients 

(secondary cohort) who had two echocardiographic evaluations. As these patients underwent 

two echocardiographic examinations, the change in their location on the network was also 

monitored to investigate whether the network could represent the changes in cardiac disease 

staging. The institutional review board approved the study protocol, and all study participants 

in the prospective studies provided written informed consent. 

 

3.1.2 Study population 

The retrospective group included 866 outpatients (65 ± 17 years, 44.7% males) referred 

for transthoracic echocardiographic examination between March 2013 and December 2015 at 

the Icahn School of Medicine at Mount Sinai (New York, New York). The prospective group 

included 468 patients (55 ± 15 years, 41.7% males) enrolled between July 2017 to February 

2018 in two ongoing patient registries at West Virginia University (Morgantown, West 

Virginia) that followed two prospective trials (NCT02560168 and NCT02248831). The pooled 

patients from the retrospective study and the two prospective registries formed the primary 

cohort, which was used for developing the patient-patient similarity network. 

For personalized patient predictions, we tested the topological model in 96 additional 

patients (secondary cohort, 58 ± 15 years, 51.0% males) who had two consecutive 

echocardiographic examinations. Follow-up data for this cohort were collected after the second 

echocardiographic assessment. 
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3.1.3 Topological data analysis 

TDA was performed using the cloud-based Ayasdi Workbench (version 7.4, Ayasdi 

Inc., Menlo Park, CA). Nine echocardiographic variables were used to create the topological 

network, namely, LV ejection fraction (LVEF), LV mass index, early (E) and late (A) diastolic 

transmitral flow velocities, E/A ratio, early diastolic relaxation velocity (e'), E/ e' ratio, left atrial 

volume index, and tricuspid regurgitation peak velocity (TRV). Data were analyzed using a 

normalized correlation metric with two multi-dimensional scaling lenses (resolution: 66, gain: 

2.7, equalized). In the created topological network, each node represented a cluster of patients, 

whereas edges connected nodes that had at least one patient in common. Nodes were color-

coded based on the average value of the parameter of interest (e.g., LVEF). 

After creating the network in the primary cohort, we divided it into four regions for 

further analyses. We trained a random forest-based classifier using the echocardiographic data 

of the primary cohort to predict the region that each patient of the secondary cohort might 

belong to. 

 

3.1.4 Clinical outcomes, endpoints, and staging 

Patient electronic medical records were reviewed for post-echocardiographic follow-up. 

Endpoints were death from a major adverse cardiac event (MACE, defined as myocardial 

infarction, acute coronary syndrome, acute decompensated HF, cardiac arrest, or arrhythmia) 

and first MACE-related rehospitalization. The time to each endpoint was measured from the 

date of the echocardiographic examination used in the study. Clinical cardiac disease staging 

was performed using New York Heart Association (NYHA) functional class assessment, 

American College of Cardiology (ACC) / American Heart Association (AHA) HF staging, and 

the Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC) risk score. 

 

3.2 Study population and methods of machine learning-based mortality prediction among 

patients undergoing CRT implantation 

3.2.1 Study population and protocol 

We identified 2,282 patients who underwent successful CRT implantation at the Heart 

and Vascular Center of Semmelweis University (Budapest, Hungary) between September 2000 

and December 2017. For each patient, pre-implantation clinical characteristics such as 

demographics, medical history, physical status, and vitals, currently applied medical therapy, 
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ECG, echocardiographic, and laboratory parameters were extracted retrospectively from 

electronic medical records and entered into our structured database. 

An additional prospective database of patients undergoing CRT implantation between 

January 2009 and December 2011 was also utilized. Patients included in both the retrospective 

and the prospective databases were removed from the retrospective database. In this way, the 

two cohorts were completely independent, and they could be used as training and test cohorts 

for ML algorithms. 

The study protocol complies with the Declaration of Helsinki, and it was approved by 

the Regional and Institutional Committee of Science and Research Ethics (approval No. 

161/2019). 

 

3.2.2 Feature selection and data pre-processing 

Our structured database initially comprised over 100 easily obtainable pre-implantation 

clinical variables. Firstly, features included in both the retrospective and the prospective 

databases were identified (n = 49). Then, features missing for >40% of cases (n = 16) were 

excluded. The final set of input features included 33 pre-implantation clinical variables. 

Missing values were imputed using the mean imputation method, which replaces the 

missing values of a certain variable with the mean of the available cases. As the range of 

different features varied widely and some of the utilized algorithms required the data to be 

normalized, Z-score transformation was performed after imputation. 

 

3.2.3 Model development 

We used the follow-up data to generate six classes of possible outcomes: death during 

the 1st (class 1), the 2nd (class 2), the 3rd (class 3), the 4th (class 4), the 5th year after CRT 

implantation (class 5), and no death during the first 5 years following the implantation (class 

6). The task of ML algorithms was to predict the class membership probabilities of each patient 

over these classes based on the pre-implantation clinical features. 

Model development included trials of several ML classifiers such as logistic regression, 

ridge regression, support vector machine (SVM), k-nearest neighbors (KNN) classifier, 

gradient boosting classifier, traditional random forest (TRF), conditional inference random 

forest (CIRF), and multi-layer perceptron. Models were trained with stratified 10-fold cross-

validation on the training cohort, and a grid search approach was used to tune the hyper-

parameters of each ML algorithm. 
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The outputs of each model were series of six values representing the previously defined 

class membership probabilities. To create binary classifiers, we calculated cumulative class 

membership probabilities by summing these values until the given year of follow-up. The 

computed cumulative probabilities were then calibrated using Platt’s scaling, and the survival 

curve could be plotted for each patient. To quantify the model’s discriminative capabilities in 

each year, receiver operating characteristic (ROC) curve analysis was performed, and the area 

under the ROC curve (AUC) was calculated. The mean AUC of 1-, 2-, 3-, 4-, and 5-year 

calibrated cumulative probabilities was computed, and it served as the major metric to assess a 

model’s performance. 

 

3.2.4 Model testing 

The model with the highest mean AUC was selected for further evaluation, and it is 

referenced as the SEMMELWEIS-CRT (perSonalizEd assessMent of estiMatEd risk of 

mortaLity With machinE learnIng in patientS undergoing CRT implantation) score throughout 

the entire thesis. To determine whether the model remains accurate when new data are fed into 

it, we tested it on the patients of the test cohort. For each patient in the test cohort, we also 

computed pre-existing risk scores (Seattle Heart Failure Model [SHFM], VALID-CRT, 

EAARN, ScREEN, and CRT-score). Their prediction capabilities were quantified annually 

with AUCs, and they were compared with SEMMELWEIS-CRT score using the DeLong test. 

 

3.3 Study population and methods of exploring sex-specific patterns of mortality 

predictors among patients undergoing CRT implantation 

3.3.1 Study population and protocol 

We identified 2,412 patients with chronic HFrEF (NYHA functional class II-IV) who 

underwent successful CRT implantation at the Heart and Vascular Center of Semmelweis 

University (Budapest, Hungary) between September 2000 and September 2018. For each 

patient, pre-implantation clinical characteristics (demographics, medical history, physical 

status, vitals, currently applied medical therapy, ECG, echocardiographic and laboratory 

parameters) and procedural parameters (type of the implanted device, LV lead position) were 

collected retrospectively from paper-based or electronic medical records and entered to our 

structured database. The study protocol complies with the Declaration of Helsinki, and it was 

approved by the Regional and Institutional Committee of Science and Research Ethics 

(Approval No. 161/2019). 
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3.3.2 Study outcomes 

Follow-up data (status [dead or alive], date of death) was obtained for all patients by 

querying the National Health Insurance Database of Hungary in September 2019. Accordingly, 

all patients included in our database were followed for at least 1 year or died within 1 year. In 

the entire study population, 2,116 patients also had 3-year outcome data available. The primary 

endpoint of our study was all-cause mortality. 

 

3.3.3 Feature selection and data pre-processing 

Feature selection included two consecutive steps. First, any feature with ≥40% missing 

data was removed. Second, collinear variables (Spearman correlation coefficient ≥ 0.3 or ≤-0.3) 

were also excluded as variables containing redundant information might bias the further steps 

of the analysis. The final set of input features comprised 30 pre-implantation and procedural 

variables. Patients with more than 30% of missing values were excluded from further analyses. 

Missing values of continuous variables were imputed using multiple imputation by chained 

equations (MICE). Missing values of categorical variables were replaced with -1. As the range 

of different continuous features varied widely, Z-score transformation was applied after 

imputation to eliminate the possibility of model bias caused by the differing magnitude of the 

numerical values. 

 

3.3.4 Model development and evaluation 

We developed ML models to predict two separate outcomes: (1) 1-year all-cause 

mortality, and (2) 3-year all-cause mortality in the entire cohort, in males and females separately 

(a total of 6 separate binary classification tasks). To quantify a model's discriminatory power, 

ROC curve analysis was performed, and the AUC was calculated. Model development included 

trials of several binary classifiers such as logistic regression, SVM, KNN, Gradient Boosting 

classifier, TRF, CIRF, and multi-layer perceptron. 

As the first step of model derivation, 20% of the given patient subset (all patients, males 

or females) was randomly selected as the holdout (test cohort). Hyperparameter tuning was 

performed with stratified 10-fold cross-validation in the remaining data (80%, training cohort). 

The algorithm (with fine-tuned hyperparameters) exhibiting the highest AUC was then 

retrained in the entire training cohort, and its performance was evaluated in the test cohort in a 

statistically independent way. 
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3.3.5 Feature importances 

To determine the major predictors of 1- and 3-year all-cause mortality in each patient 

subset, permutation feature importances were computed from each of the 6 final models. 

Briefly, the importance of an input feature is measured by calculating the increase in the model's 

prediction error after permuting its values while keeping other features the same as before. In 

the current study, permutation was performed 10 times for each feature. A feature is considered 

important if shuffling its values decreases the model's discriminatory power (AUC) as the 

model relies heavily on that feature for the prediction. On the other hand, a feature is 

unimportant if shuffling its values leaves the AUC unchanged because, in this case, the model 

ignores the feature while predicting the outcome. After calculating the importance of each 

feature, we divided it by the AUC measured in the data set before shuffling any of its features 

to enable the comparison of feature importances between different models. 

 

3.4 Statistical analysis and software packages 

Continuous variables are expressed as median (interquartile range), while categorical 

variables are reported as frequencies and percentages. Between-group comparisons were 

performed using unpaired Student’s t-test, Mann-Whitney U test, Kolmogorov-Smirnov test, 

analysis of variance, or Kruskal-Wallis test for continuous variables, and Chi-squared test or 

Fisher’s exact test for categorical variables, as appropriate. Correlations between categorical 

variables were computed using Goodman and Kruskal’s γ coefficient. The survival of 

subgroups was visualized using Kaplan-Meier curves, and Log-rank tests were performed for 

comparison. Cox proportional hazards models were used to compute hazard ratios (HRs) with 

95% confidence intervals (CIs). A p-value of <0.05 was considered statistically significant. 

Data pre-processing, feature selection, and ML algorithms were implemented in Python 

(version 3.6.7 and 3.6.8, Python Software Foundation, Wilmington, Delaware, USA) using the 

scikit-learn library (versions 0.20.2, 0.21.3, and 0.23.dev0). Statistical analyses, including 

group comparisons and survival analyses, were performed in R (versions 3.4.0, 3.4.2, and 3.6.1, 

R Foundation for Statistical Computing, Vienna, Austria).  
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4. RESULTS 

4.1 Applying topological data analysis to integrate echocardiographic features of left 

ventricular structure and function into a patient similarity network 

4.1.1 The continuum of cardiac function 

The use of TDA to create a patient-patient similarity network in the retrospective data 

set resulted in the formation of a looped structure (Figure 1). After the addition of cases from 

the prospective data set, the loop was persistent, which validated that the loop structure of the 

network model was intrinsic to the data and not an artifact. The combined network was used 

for discovering feature distributions and developing associations with clinical and outcome 

data. With progressing from the 1st to the 4th region, an increasing trend was seen in age and 

the prevalence of cardiovascular risk factors. We also noted that echocardiographic variables 

followed a gradually changing pattern throughout the loop. LVEF remained preserved in 

regions I-III; however, it was significantly reduced in the 4th region (p < 0.001). LV mass 

progressively increased, and the parameters of diastolic function progressively worsened from 

region I to IV. We found a correlation between the regions and both NYHA functional classes 

(γ = 0.47; p < 0.001) and ACC/AHA stages (γ = 0.52; p < 0.001) in the prospective cohort. 

 

4.1.2 The association of regions with major adverse cardiac events 

The median follow-up time in the primary cohort was 309 (100 – 531) days. A total of 

207 (16%) patients experienced MACE-related hospitalizations, and 19 (1%) patients died due 

to MACE during follow-up. The number of MACE-related hospitalizations increased 

progressively from regions I to IV (p < 0.001), with MACE-related deaths seen only in the 3rd 

and 4th regions (p < 0.001). The Kaplan-Meier curves for MACE-related rehospitalization in 

the regions differed significantly (p < 0.001) (Figure 2A). The number of MACE-related deaths 

was low in the 1st and 2nd regions, whereas the probability of death was significantly higher in 

the 3rd and 4th regions than in the 1st region (p < 0.001) (Figure 2B). 
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Figure 1 The looped network of cardiac dysfunction 

Nodes indicate one or more patient(s) who have similar echocardiographic characteristics, and nodes having at 

least one patient in common are connected by edges. Nodes were color-coded according to the mean EF of the 

patients in the given node. 

A – late diastolic transmitral flow velocity, DM – diabetes mellitus, E – early diastolic transmitral flow velocity, 

e' – early diastolic relaxation velocity at septal mitral annular position, EF – ejection fraction, HLD – 

hyperlipidemia, HTN – hypertension, LAVi – left atrial volume index, pEF – preserved left ventricular ejection 

fraction, LVMi – left ventricular mass index, TRV – tricuspid regurgitation peak velocity 

 

4.1.3 Individualized patient predictions 

Individualized patient predictions for clinical stages, severity, and future adverse events 

were tested in the secondary cohort. After predicting the region membership of patients of this 

cohort using a random forest classifier, the same tendency was observed for the probability of 

MACE-related rehospitalization in the regions as in the primary cohort (Figure 2C). A 

correlation between NYHA functional classes and ACC/AHA stages with regions was also 

observed (γ = 0.56 and γ = 0.67; both p < 0.001, respectively), which indicated that more 

symptomatic patients were found in the 4th region than in other regions. 

We also wanted to demonstrate whether changing the location of a patient on the loop 

was associated with worsening or improvement of cardiac function. To illustrate the motion of 

patients on the loop, the predicted regions of the 1st and 2nd echocardiograms were compared. 

Both echocardiograms in 13 patients were in low-risk regions (region I or II), whereas those in 
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63 patients were in the high-risk region (region III or IV). Fifteen patients showed improvement 

(moved from region III and/or IV to region I and/or II) in echocardiographic results, and 5 

patients showed worsening (moved from region I and/or II to region II and/or IV) 

echocardiographic results. Improvement or staying in the low-risk regions was associated with 

lower MACE-related rehospitalization rates following the second echocardiogram than 

worsening or staying in high-risk regions (3% vs. 37%, p < 0.001). 

 

Figure 2 Kaplan-Meier curves for MACE-related outcomes by regions 

Kaplan-Meier curves of the four regions: (A) MACE-related rehospitalization in the primary cohort, (B) MACE-

related death in the primary cohort, and (C) MACE-related rehospitalization in the secondary cohort. 

MACE – major adverse cardiovascular event 

 

4.2 Designing and evaluating a machine learning-based risk stratification system to 

predict all-cause mortality of patients undergoing CRT implantation 

4.2.1 Baseline clinical characteristics 

The final training cohort included 1,510 patients (75.6% males, 50.8% ischemic 

etiology, 45.6% CRT-D) who underwent CRT implantation. A total of 158 CRT patients 

(80.4% males, 60.2% ischemic etiology, 20.3% CRT-D) were prospectively enrolled and 

entered into the test database. During the 5-year follow-up period, 805 (53.3%) patients died in 

the training cohort, and there were 80 (50.6%) deaths in the test cohort. 

 

4.2.2 Prediction of all-cause mortality 

Among the evaluated ML classifiers, random forest (i.e., the SEMMELWEIS-CRT 

score) yielded the highest AUCs for predicting all-cause mortality at 1-, 2-, 3-, 4-, and 5-year 

follow-up in the test cohort. When compared with the pre-existing risk scores, the 

SEMMELWEIS-CRT score demonstrated significantly better response prediction and greater 

discrimination of mortality (Table 1). 
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Table 1 Area under the receiver operating characteristic curve of the different scores 

*p < 0.05 vs. SEMMELWEIS-CRT, DeLong test. Cell contents are areas under the receiver operating 

characteristic curves with 95% confidence intervals. 

SHFM – Seattle Heart Failure Model 

 

4.2.3 Machine learning-based risk stratification 

Based on the predicted probability of death, patients were split into four quartiles at each 

year of follow-up. As depicted by Kaplan–Meier curves, there was a significant difference in 

the distribution of events across the quartiles at all years (Figure 3). 

 

Figure 3 Survival analysis of the quartiles 

Based on the predicted probability of death, patients were split into four quartiles at each year of follow-up. The 

survival of the quartiles was visualized on Kaplan–Meier curves, and log-rank tests were performed for 

comparison. 

 1-year 2-year 3-year 4-year 5-year Mean 

SEMMELWEIS-CRT 
0.768 

(0.674-0.861) 
0.793 

(0.718-0.867) 
0.785 

(0.711-0.859) 
0.776 

(0.703-0.849) 
0.803 

(0.733-0.872) 
0.785 

SHFM 
0.537 

(0.426-0.647)* 

0.543 

(0.445-0.642)* 

0.539 

(0.447-0.632)* 

0.544 

(0.453-0.635)* 

0.544 

(0.454-0.634)* 
0.541 

EAARN 
0.602 

(0.505-0.699)* 

0.627 

(0.539-0.714)* 

0.653 

(0.570-0.736)* 

0.649 

(0.566-0.731)* 

0.643 

(0.560-0.726)* 
0.635 

VALID-CRT 
0.529 

(0.416-0.643)* 
0.618 

(0.523-0.713)* 
0.638 

(0.552-0.725)* 
0.637 

(0.550-0.724)* 
0.650 

(0.564-0.737)* 
0.614 

CRT-score 
0.722 

(0.637-0.806) 

0.743 

(0.667-0.818) 

0.732 

(0.657-0.807) 

0.720 

(0.644-0.795) 

0.693 

(0.615-0.771)* 
0.722 

ScREEN 
0.595 

(0.516-0.673)* 

0.555 

(0.477-0.633)* 

0.536 

(0.460-0.612)* 

0.525 

(0.449-0.601)* 

0.549 

(0.474-0.624)* 
0.552 
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4.3 Exploring the sex-specific differences and similarities in the predictors of mortality 

among patients undergoing CRT implantation 

4.3.1 Baseline clinical characteristics and all-cause mortality 

The final 1- and 3-year cohorts included 2,191 (74.7% males, 50.4% ischemic etiology, 

56.7% CRT-D) and 1,900 patients (75.0% males, 51.5% ischemic etiology, 54.1% CRT-D), 

respectively. In the 1-year cohort, 203 (12.4%) men and 49 (8.8%) women died during the 1-

year follow-up period. Univariable Cox regression analysis revealed a significantly lower risk 

of all-cause mortality in women compared to men (HR: 0.698, 95% CI: 0.511 – 0.954; p = 

0.024); however, after adjusting for age, etiology of HF, QRS morphology, type of the 

implanted device, and type of atrial fibrillation (AF), we could not observe a significant 

difference between sexes (HR: 0.803, 95% CI: 0.581 – 1.110; p = 0.183). Males exhibited 

significantly higher mortality rates compared to females in the 3-year cohort as well (502 

[35.2%] vs. 113 [23.8%]; p < 0.001). The univariable Cox regression analysis also confirmed 

this finding as it showed a significantly lower risk of all-cause mortality in females compared 

to males (HR: 0.625, 95% CI: 0.510 – 0.767; p < 0.001). Moreover, this difference remained 

significant even after adjusting for the previously listed covariates (HR: 0.686, 95% CI: 0.555 

– 0.848; p < 0.001). 

 

4.3.2 Machine learning for the prediction of 1- and 3-year all-cause mortality 

Among the evaluated ML classifiers, CIRF exhibited the best performance for 

discrimination between survival/all-cause death with an AUC of 0.717 (95% CI: 0.676 – 0.758) 

and 0.739 (95% CI: 0.715 – 0.762) in the 1- and 3-year training cohorts, respectively. When 

evaluating the models' discriminatory power in the test cohorts, we observed an AUC of 0.728 

(95% CI: 0.645 – 0.802) and 0.732 (95% CI: 0.681 – 0.784) for the prediction of 1- and 3-year 

mortality, respectively. Models were also trained and tested separately in the female and male 

subsets of the 1- and 3-year cohorts. The AUCs ranged from 0.712 to 0.748 in the training sets 

and from 0.681 to 0.798 in the test sets suggesting a modest variability in the models' predictive 

capabilities across the different subsets of patients. 

 

4.3.3 Most important predictors of mortality as assessed using machine learning 

In the overall study population (including both sexes), the most important predictor of 

1-year mortality was serum sodium, which was followed by serum creatinine, hemoglobin 

concentration, age, and etiology of HF (Figure 4). These features were also found among the 
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strongest predictors of 3-year mortality, however, in different order of importance (serum 

sodium, age at implantation, hemoglobin concentration, serum creatinine, and etiology). 

We observed several sex-specific differences during the subgroup analysis. In males, 

the top predictors of 1-year mortality were hemoglobin concentration, serum sodium, serum 

creatinine, left bundle branch block morphology, and age, whereas, in females, the most 

important predictors were serum sodium, etiology, LVEF, age, and serum creatinine (Figure 4). 

In males, the strongest determinants of 3-year mortality were serum sodium, 

hemoglobin concentration, age at implantation, serum creatinine, and allopurinol, whereas, in 

females, these features were serum sodium, age at implantation, type of AF, NYHA functional 

class, and etiology in decreasing order (Figure 4). 

 

Figure 4 The most important predictors of 1- and 3-year all-cause mortality in patients undergoing CRT 

implantation 

To keep the data comparable between the different models, we identified the top 5 predictors in each model and 

took the union of these features; then, we plotted the results on radar charts. 

AF – atrial fibrillation, LBBB – left bundle branch block, LVEF – left ventricular ejection fraction, NYHA – New 

York Heart Association  
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5. CONCLUSIONS 

1. Based on our first study, in which we applied TDA to analyze the retrospectively and 

prospectively collected echocardiographic data of a large patient cohort with varying 

degrees of LV structural and functional remodeling, we reached the following conclusions: 

1.1 TDA is a robust data analytical approach that is capable of effectively integrating 

multiple echocardiographic parameters of LV structure and function into a looped 

patient-patient similarity network in which subjects could be mapped to specific 

locations associated with distinct disease stages and clinical outcomes. 

1.2 TDA can be utilized to trace the progression of cardiac dysfunction in patients as they 

travel through cycles of compensation and decompensation within a looped disease 

space. 

2. In our second study, in which we implemented and evaluated various ML algorithms to 

predict all-cause mortality in patients undergoing CRT implantation, we came to the 

following conclusions: 

2.1 By capturing the non-linear associations between predictors and outcomes, our CIRF-

based risk stratification system – the SEMMELWEIS-CRT score – achieved high 

performance in predicting 1-, 2-, 3-, 4-, and 5-year all-cause death in patients 

undergoing CRT implantation and effectively outlined patient subgroups at high risk 

for mid-term and long-term mortality. 

2.2 The SEMMELWEIS-CRT score outperformed several conventional statistics-based 

risk scores. 

3. Our third study, in which we used ML algorithms to explore the sex-specific differences 

and similarities in the predictors of all-cause mortality among patients undergoing CRT, led 

us to the following conclusions: 

3.1 Female sex was found to be associated with significantly better survival rates in our 

cohort of CRT patients. 

3.2 Using CIRF in combination with easily obtainable clinical features, we could effectively 

predict 1- and 3-year all-cause mortality in patient subsets containing males or females 

exclusively. 

3.3 Sex-specific patterns were identified in the predictors of mortality, which also changed 

over time. The role of HF etiology, NYHA functional class, and LVEF was more 

pronounced in females, whereas hemoglobin concentration, QRS morphology, and 

treatment with allopurinol were notably more predictive for all-cause mortality in males.  
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