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1. INTRODUCTION 

 

1.1. Graphs in systems biology 

 

Complex systems of multiple interacting elements often exhibit behaviors of emergent 

character. Rather than isolated agents, the components are mutually influenced by the activity 

of each other. Such systems can be analyzed on multiple different levels and from a wide 

array of perspectives. As a first step, static models can be drawn by mapping the interacting 

elements in a binary way. Considering the system as a graph, then the corresponding 

adjacency matrix contains that information in a compact form. Topological structure of the 

whole system, its sub-regions, or local neighborhoods of individual elements can be analyzed 

using this representation and elements can be classified both based on their position in local 

or in system-level topology. 

 

A considerable subset of biological phenomena can be represented using such tools (Barabási 

& Oltvai, 2004; Busiello et al., 2017; Mihalik et al., 2012). From ecology to behavioral 

sciences, through networks of large-scale neural activity, down to the molecular level of gene 

product interactions (or even approaching atomic scales in structural biology) we can find 

countless examples where graph theoretical considerations are useful. Even though the real 

systems are temporal processes, considering the stationary aspects of them could lead to a 

better understanding of embedded interaction dynamics and to describe factors contributing 

to functionality. Different graphs representing alternative states of the system, or temporal 

snapshots can be compared to access non-stationary properties. Furthermore, the connected 

elements (graph nodes) themselves are not necessarily reflecting discrete physical entities 

like subjects or molecules but can be outputs of preceding analytic steps like measurement 

values associated to the studied items. Temporal and dynamic information can be encoded in 

these pre-processing steps. 
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From the long list of possible examples, in this work we will focus on two distinct biological 

systems, first, the large-scale functional neural network of the human brain and second, 

transcriptomic landscapes delivered from the same organ.  Considering functional brain 

networks, topological information can be delivered by studying the wiring diagram of neural 

elements on different scales of anatomy. Parallel to this, molecular interactions are usually 

curated in databases and similarly organized to functional abstractions, such as pathways. 

Ongoing neural activity can be measured using a wide array of tools including functional 

neuroimaging and electrophysiology. Among the best examples for stationary processes, we 

can consider non-REM sleep recordings (Ujma et al., 2019). In case of molecular biology, 

gene expression levels or protein concentrations can be measured and analyzed together with 

various other molecular factors such as genetic polymorphisms (Banlaki et al., 2015; Kovacs-

Nagy et al., 2013). Comparing phenotypes can reveal information about the importance of 

those patterns. In both systems, reactions to environmental as well as internal changes are 

relatable to dynamic processes or phase transitions, where intermittent short-term or long-

lasting chronic perturbations alter the behavior of the system. Studying those responses leads 

to a more profound understanding of the hidden characteristics of complex biological 

phenomena. Changes of functional brain activity can be investigated both in normal and 

pathological context. Fast changes occur as responses to sensory stimuli or reflecting mental 

activity and their detection can be used to develop brain-machine interface systems among 

myriad of other theoretical and practical applications (Lee et al., 2019). On the other hand, 

quick pathological phase shifts can be observed in epilepsy (Jung et al., 2011; Kim et al., 

2015; Ortega et al., 2008; van Mierlo et al., 2013; Wilke et al., 2011). This domain allows us 

to study locally controlled activities on the micro- or mesoscopic scale when analyzing inter-

ictal activities and full-scale phase transitions between normal and pathological activity as 

well during seizures. Functional connectivity of epileptic and supposedly healthy brain tissue 

can be compared by analyzing responses elicited by direct cortical stimulation in patients 

implanted with semi-invasive intracranial electrode arrays (ECoG grids) using graph tools 

(File et al., 2020).  
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Parallel to this, molecular biology provides us examples of dynamic processes when studying 

long-term reorganizations of gene expression or proteome concentration patterns relatable to 

aging or chronic neurodegenerative diseases (De Magalhães & Tacutu, 2015; Fernandes et 

al., 2016; Guebel et al., 2018; Kirkwood & Kowald, 1997; Kiss et al., 2009; Simkó et al., 

2009). Interestingly, de-facto phase transitions in this rather understudied phenomenon were 

only considered recently in the literature (Lehallier, Gate, Schaum, Nanasi, Eun Lee, et al., 

2019; Lehallier, Gate, Schaum, Nanasi, Lee, et al., 2019). 

 

1.2. Machine learning in epilepsy and molecular biology 

 

Applications of machine learning benefited tremendously from the exponential growth of 

accessible computational power in the recent years. Consequently, an expansion of 

comparable scale can be observed in the number of such techniques and the real-world 

problems they have been applied to (Ben-Hur et al., 2008; Fernández-Delgado et al., 2014). 

Healthy (Lee et al., 2019; Ujma et al., 2019) and epileptic (Abbasi & Goldenholz, 2019) brain 

activity can be analyzed with great efficiency. Machine learning can help clinical seizure 

detection (Fergus et al., 2016), prediction (Rasheed et al., 2020; Usman et al., 2017), and 

even intervention (Anderson et al., 2007). 

 

On the molecular level, applicability of these tools is equally widespread, from cancer 

diagnosis (Smolander, Dehmer, & Emmert-Streib, 2019) to optimization of therapy (Tseng 

et al., 2018), to autoimmune (Smolander, Dehmer, & Emmert-Streib, 2019), and to age-

related diseases, such as coronary artery disease (Ayatollahi et al., 2019), and Alzheimer’s 

Disease (Dukart et al., 2011). Aging itself (Fabris et al., 2017; Kerepesi et al., 2018), and 

putative lifespan-extending compounds in model animals (Barardo et al., 2017) have been 

investigated. 
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Interestingly, the intersection between machine learning and interaction network studies is 

relatively small, compared to the popularity of the two approaches as stand-alone methods. 

As a notable example, hierarchical structure of the yeast transcriptomic machinery (Chen et 

al., 2016) have been reconstructed in a data-driven manner using machine learning tools and 

an integrative analysis of yeast fission have been performed, combining machine learning 

with network biology (Pancaldi et al., 2012). Plant-pathogen interactions have also been 

studied from this perspective (Mishra et al., 2018). 

 

1.3. Support Vector Machines 

 

Support Vector Machines (SVM) are geometrically inspired classification tools which are 

working by the idea of drawing an n-dimensional hyperplane, which provides a clean-cut 

separation of classes of observations projected into an n-dimensional space, where n equals 

to the number of features measured (Ben-hur et al., 2001; Ben-Hur et al., 2008). Observations 

themselves can be properties of the investigated objects, like frequency band power of a 

channel in case of EEG recordings or concentrations of individual proteins in a blood sample. 

Classes are sets of measurements to be separated, like cases and controls. The SVM algorithm 

distinguishes itself from other tools by its specialized focus on hard-to-classify observations. 

Hence, possible hyperplanes are not evaluated using all observations but instead, geometric 

distances from the nearest class exemplars are used for this purpose. The machine optimizes 

the separator hyperplane in order produce a hyperplane with maximum margin from those 

exemplars, the “support vectors”. 

 

The technique is known to be resilient to overfitting and generally copes well with outliers 

which are common in biological data. SVMs can use different kernels to transform the 

measurement values and consequently the projected positions of the observations in the 

hyperspace, effectively reformulating complex problems into linearly separable patterns. 

Importantly, both linear and radial basis function (Gaussian) kernels proven to be effective 
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in binary classification of transcriptome data to an extent to be comparable favorably to state 

of the art deep belief networks (Smolander, Dehmer, & Emmert‐Streib, 2019). Good 

generalization can be achieved even with moderate sample sizes, which is an important factor 

given the limited availability of biological data. For a wide variety of mid-scale problems, 

SVM algorithms were shown to outperform neural networks and various other machine 

learning approaches (Fernández-Delgado et al., 2014). Similarly, they have the potential to 

surpass Extreme Learning Machines (Chorowski et al., 2014). 

 

1.4. Epilepsy 

 

Pharmacologically intractable epilepsy is a neurological disorder with tremendous impact on 

the quality of life. Besides the direct interference of the unpredictable seizure on day to day 

activities it is important to consider the long-term consequences of such episodes of extreme 

neural activity on the organization of synaptic networks. Repeated epileptiform activities can 

gradually reshape brain connectivity and as such they can compromise development in 

affected children. Disturbances can manifest in increased likelihood of psychiatric disorders 

(Hoare, 1984). With the presence of neurobehavioral comorbidities, a wide range of cognitive 

domains, especially executive functions can be compromised (Hermann et al., 2008). 

Lifelong effects of childhood onset epilepsy can be devastating – prospective cohort studies 

revealed profound structural changes of the brain (Garcia-Ramos et al., 2017) as well as 

severe decline in language, semantic, and visuomotor functions (Karrasch et al., 2017). 

Therefore, reliable diagnosis is important and even radical forms of treatment, such as 

destructive surgical techniques can be favorable choices considering the costs and benefits. 

 

 

On the other hand, epilepsy can also be connected to aging and neurodegeneration. Epilepsy 

is the third most common neurological disorder of old age (Ravdin & Katzen, 2013). 
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Neurodegenerative changes typically occur earlier and with greater prevalence in patients 

suffering from chronic epilepsy, which in turn tends to become more severe with aging 

(Kotloski et al., 2019). Furthermore, the well-known hallmark of various neurodegenerative 

diseases, the amyloid-β1-42 (Aβ1-42) peptide may also increase the surface expression of 

dopamine D1 receptors which influences both the hippocampal epileptic threshold and 

synaptic plasticity. In late-onset epilepsy patients, Aβ1-42 levels were significantly decreased 

in cerebrospinal fluid, suggesting cerebral deposition (Costa et al., 2016). Various clinical, 

electrophysiological, and molecular similarities emphasize further the relatedness of epilepsy 

to a wide array of diseases, including Alzheimer’s Disease and schizophrenia (Cendes et al., 

2019). 

 

Animal studies revealed complex patterns in hippocampal remodeling in temporal lobe 

epilepsy, whereas initial increases of volume were followed by a subsequent atrophy 

(Roggenhofer et al., 2019). In epileptic foci, cerebrovascular angiogenesis and remodeling 

were observed together with increased permeability of the blood-brain barrier. Those changes 

have been shown both in human patients and in experimental models of seizure and involving 

molecular factors such as Interleukins, TGF-β, PDGF and VEGFR2 (Marchi & Lerner-

Natoli, 2013). Other extracellular aspects emphasize further the intervened nature of various 

degenerative brain pathologies and epilepsy. Increased activity of matrix metalloproteinases 

(MMPs) and dysregulation of the balance between them and their inhibitors (TIMPs) has 

been implicated in the pathogenesis of drug dependence, Alzheimer's disease, and epilepsy 

(Mizoguchi et al., 2011). The peculiar balance of MMP-TIMP activity influences the 

cleavage of neurotransmitter receptors, growth factors that mediate cell adhesion, 

synaptogenesis, synaptic plasticity, and long-term potentiation, among others. Interestingly, 

human cord plasma treatment ameliorates cognitive deficits associable to hippocampal 

dysfunction in aged mice and for this effect, TIMP2 found to be necessary (Castellano et al., 

2017).  

1.5. Aging 
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Our understanding on the process of aging with special emphasis of brain aging is limited: 

parallel theories have been developed from concepts describing a precisely timed “aging 

program” to viewpoints emphasizing stochasticity and emergent nature (Partridge & Gems, 

2002), including Protein-Protein Interaction (PPI) network considerations (De Magalhães & 

Tacutu, 2015; Kiss et al., 2009).  

 

Gene expression changes related to synaptic plasticity, calcium signaling, glutamate and 

GABA receptors, vesicular transport, mitochondrial function, stress response, antioxidant 

defense and DNA repair were observed in the human brain (Lu et al., 2004). Rather than 

isolated events, tissue- and organ-level alternations can directly affect each other on multiple 

scales. Importance of neuron-immune crosstalk involving inhibitor of nuclear factor kappa 

B (IkB kinase-b, IKK-b) nuclear factor kappa B (NF-kB) and gonadotropin-releasing 

hormone (GnRH) signaling was demonstrated. The central role of non-neural elements such 

as microglia has been proposed, highlighting the role of Interleukin-33 in Alzheimer’s 

Disease (Fu et al., 2016), in development (Vainchtein et al., 2018) and recently, in 

neuroplasticity and aging (Nguyen et al., 2020). Furthermore, hypothalamic immunity 

changes are shown to be affecting whole-body aging in mice (Zhang et al., 2013).  

 

The discussion about the cross-species conservativeness of the genomic background of aging 

is far from settled. Particular aging-associated gene expression changes are shown to be 

remarkably conserved across distant eukaryotic species, like nematodes and yeast (Smith et 

al., 2008) but also within the class of mammals (Jobson et al., 2010; Semeiks & Grishin, 

2012). This conserved system known to be enriched in elements functionally related to 

genomic instability, telomere attrition, epigenetic alternations, loss of proteostasis, 

deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell 

exhaustion, and altered intercellular communication (López-Otín et al., 2013). Meta-analysis 

of rodent and human studies confirmed the prominent role of the immune system, 
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mitochondria, energy metabolism and cellular senescence while also revealing clues about 

the involvement of collagen-related processes, the lysosome, apoptotic and cell cycle-related 

processes (de Magalhães et al., 2009).  

 

On the other hand, comparison of multi-tissue data across human and mouse yielded 

strikingly weak overlaps of lists of homologs with significant age-related expression changes 

(Swindell et al., 2012; J. Yang et al., 2015; Zahn et al., 2007) and also, even chimpanzee 

neocortex seems to be utterly different to its human counterpart in this regard (Fraser et al., 

2005). It is plausible to think about aging as a multifactorial process of heterogeneous origin 

and phenomenology, which could show considerable discrepancies across individuals and 

also within the same individual, even on sub-organ level (Stegeman & Weake, 2017). DNA 

methylation based epigenetic age acceleration measurements (Horvath, 2013) showed 

remarkable differences when comparing 30 anatomic sites (Horvath et al., 2015a). In human 

brain tissue, compared to the cerebellum, age seems to have a much higher impact on 

neocortical gene activity (Fraser et al., 2005). Similarly, using epigenetic clock analysis, the 

cerebellum found to be especially resilient to aging-related changes whereas the frontal and 

temporal cortices were comparable (Horvath et al., 2015b). 

 

Graph aspects can be taken into account, as aging genes shown to be highly connected 

(central) members of the interactome forming a continuous subnetwork (Bell et al., 2009; 

Kirkwood & Kowald, 1997). Furthermore, it seems that particularly central or critical 

network elements, such as hubs, have a higher tendency to be associated to age-related 

pathologies (Budovsky et al., 2007; Ferrarini et al., 2005; Promislow, 2004). The concept of 

“Guilt-by-association” proven to be useful in finding novel aging-related genes as selecting 

candidates from the interaction partners of already established aging-genes (De Magalhães 

& Toussaint, 2004). Taking a step further, integrating those findings with a wide array of 

graph-topological measurements and functional annotation data, advanced data mining tools 

can be employed to predict novel genes with possible influence on aging (Fabris et al., 2017; 
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Kerepesi et al., 2018; Li et al., 2010). Focusing on the neural tissue by comparing age-

associated transcriptome changes in fruitfly ganglia and human brain, interactome regions of 

robust behavior have been revealed which were especially enriched in cell-cycle regulating 

elements (Xue et al., 2007). 

 

1.6. Parabiosis 

 

Parabiosis is a surgically induced state that connects the circulatory systems of multiple 

organisms. When the chronological age of the connected subjects differ, effects of 

heterochronic parabiosis can be studied. Such experiments showed that multiple tissues, 

including muscle, liver, heart, pancreas, kidney, bone and brain, can be functionally and 

structurally rejuvenated in old mice connected to young in a heterochronic parabiotic state 

(Baht et al., 2015; Conboy et al., 2005; Q. Huang et al., 2018; Katsimpardi et al., 2014; 

Loffredo et al., 2013; Salpeter et al., 2013; Sinha et al., 2014; Villeda et al., 2011, 2014). 

Further research concluded that infusion of plasma (the soluble, cell-free faction of blood) 

can replicate multiple phenotypic changes associable to heterochronic parabiosis. Old plasma 

accelerates brain aging in young mice (Villeda et al., 2011) and on the flip side, young plasma 

can be used to reverse aspects of brain aging in old mice (Villeda et al., 2014). Recently, 

similar revitalizing effects of human umbilical cord plasma have been reported (Castellano 

et al., 2017) indicating the presence of evolutionarily conserved mechanisms. In turn, 

analysis of aging in human blood plasma revealed common aging patterns shared by humans 

and model animals, and this conserved aging signature could be altered by heterochronic 

parabiosis (Lehallier et al., 2019). These results underline the relevance of parabiotic mouse 

experiments in the study of human brain aging.  
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2. OBJECTIVES 

 

Support Vector Machines, as well as graph-based data analysis can be effectively used in 

various fields of neuroscience, including neurophysiology and molecular biology. My 

previous co-authored publications include applications of graph theory on molecular (Kiss et 

al., 2009; Simkó et al., 2009) as well as neural systems (File et al., 2020; Nánási et al., 2016). 

Statistical (Banlaki et al., 2015; File et al., 2020; Kovacs-Nagy et al., 2013) and model fitting 

tools (Lehallier, Gate, Schaum, Nanasi, Eun Lee, et al., 2019). 

 

In this Thesis, I will explore the synergistic application of machine learning and graph 

techniques to study large-scale functional brain activity recorded using semi-invasive 

electrophysiological tools (ECoG) as well as transcriptomic and proteomic changes relatable 

to organism-level and brain aging. 

 

In my previous works I have demonstrated the usability of network-based models (File et al., 

2020) and multi-modal feature integration (Nánási et al., 2016) in Seizure Onset Zone 

localization from intracranial ECoG recordings. In this thesis, the feasibility of ECoG 

analysis using machine learning models will be investigated. 

 

In the fields of transcriptomics and proteomics, the number of integrative studies involving 

both graph and machine learning tools is limited when compared to the extensive literature 

on both topics. Aiming to analyze omics measurement in context of a priori knowledge on 

gene product interactions, a novel integrative method, the Predictome approach will be 

introduced and validated on repeated transcriptomic measurements of human brain aging. 

Finally, proteomic changes elicited by heterochronic parabiosis will be explored using the 

validated model to investigate the relevance of parabiosis and the importance of evolutionally 

conserved, circulating factors in blood plasma in the context of brain aging. 
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3. MATERIALS AND METHODS 

 

3.1. Electrocorticography and Seizure Onset Zone information 

 

Electrocorticography (ECoG) data has been acquired and processed as described in preceding 

works (File et al., 2020; Nánási et al., 2016). In this study, previously acquired clinical data 

from six patients suffering from pharmacologically intractable focal epilepsy was used. 

Following the clinical protocols, antiepileptic drug administration was discontinued, or doses 

reduced to facilitate the emergence of epileptiform activities of diagnostic value. Then, 

implantation of flexible electrode grid arrays to subdural positions and continuous ECoG 

monitoring was performed in the Department of Functional Neurosurgery and Center of 

Neuromodulation, National Institute of Clinical Neurosciences, Budapest, Hungary. Seizure 

Onset Zones (SOZ) were identified by experts in the Epilepsy Centrum, Department of 

Neurology, National Institute of Clinical Neurosciences, Budapest, Hungary. 

 

The diagnostic setup offered 1 cm of spatial resolution (in terms of distances between 

adjacent ECoG grid electrodes). Electrode positions were reconstructed by integrating 

information from pre-implantation structural MRI and post-implantation CT scans using the 

FreeSurfer software (https://surfer.nmr.mgh.harvard.edu/). Data acquisition rate and 

precision were 1024 Hz and 16 bit. For an overview of the number of ECoG channels and 

their relative position to SOZ, please consult with Table 1. 

 

 

 

 

Table 1 – Available ECoG recording channels 

https://surfer.nmr.mgh.harvard.edu/
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# patient 
ECoG electrodes 

SOZ Non-SOZ Total 

1 10 27 37 

2 3 29 32 

3 5 25 30 

4 14 34 48 

5 11 16 27 

6 8 32 40 

 

 

3.2. Selection and preprocessing of electrocorticography data samples 

 

For each patient, 3-minute-long segments of deep non-REM sleep ECoG recordings were 

selected for analysis (n=2 for one patient, n=4 for five patients), free from any obvious 

epileptic activity except of spikes and with at least 1 hour of temporal separation from actual 

seizures. From these segments, seven frequency bands were produced by applying 

Butterworth band-pass filtering: slow delta (1-2 Hz), fast delta (2-4 Hz), theta (4-8 Hz), alpha 

(8-13 Hz), beta (13-30 Hz), slow gamma (30-45 Hz) and fast gamma (45-80 Hz) bands. 

Filters were applied in a forward-backward manner to prevent phase distortions. The range 

of 45-55 Hz was omitted to rule out artefacts potentially introduced by the 50 Hz power grid 

frequency (Table 2). 

 

Table 2 – analyzed frequency bands of the ECoG signal. 

Band name Frequency 

Slow delta 1-2 Hz 

Fast delta 2-4 Hz 

Theta 4-8 Hz 

Alpha 8-13 Hz 

Beta 13-30 Hz 

Slow gamma 30-45 Hz 

Fast gamma 55-85 Hz 

Amplitude information was accessed in the form of absolute Hilbert transformed values of 

the filtered signals. Band power was defined as squared amplitude. To obtain a reasonable 
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number of samples to be presented to the machine learning models, we have dissected the 

band power time series into non-overlapping epochs of 10 second length (Table 3). This step 

was added after the filtering and Hilbert transformations in order to avoid edge artefacts 

which could be present to some extent even with the refined Butterworth technique 

referenced above. 

 

Table 3 – summary of the acquired ECoG data epochs. 

# patient Obtained data Total epochs 

1 2 x 180 sec 36 

2 4 x 180 sec 72 

3 4 x 180 sec 72 

4 4 x 180 sec 72 

5 4 x 180 sec 72 

6 4 x 180 sec 72 

 

 

3.3. Protein-Protein Interactome data 

 

Multiple PPI databases exist with the mutual aim but with different logics and philosophies 

to collect and organize the already acquired knowledge on the interaction network of proteins 

(Ceol et al., 2009; Gioutlakis et al., 2017; Kerrien et al., 2007; Keshava Prasad et al., 2009; 

Stark, 2006; Szklarczyk et al., 2017; Türei et al., 2016; Veres et al., 2015). Since 

reproducibility is a core issue in the field, we shifted our preferences from coverage towards 

reliability when selecting a reference interactome map. Several approaches exist to 

incorporate the probabilistic nature of the curated protein-protein interaction links however 

as the method of choice is characteristic to the source, merging them (which is preferable 

given their limited overlap) would pose another challenge and the solution would be, 

inevitably, heuristic and arbitrary. From the wide array of available databases therefore we 

have focused on two, distinct by their shared high standards of reliability protocols. 

OmniPath  (Türei et al., 2016) and PICKLE (Gioutlakis et al., 2017; Klapa et al., 2013) are 
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both defining confirmation by at least two independent sources as an inclusion criteria for 

their manually curated protein interaction links. Merging them produced a novel deposit of 

highly dependable PPI data describing 195.456 interactions between 16.005 proteins which 

is, to our knowledge, could be regarded as the most comprehensive body of reliability-

optimized interactome information currently available. When constructing the unified 

database, we have opted for a protein-based namespace (UniProt) natively accessible by both 

sources to avoid additional namespace-mapping artefacts. 

 

3.4. Transcriptomic and proteomic data sources and preparation 

 

To study human brain aging, genome-wide RNA sequencing data (Deluca et al., 2012; 

Mortazavi et al., 2008; Wang, Zhong; Gerstein, Mark; Snyder, 2009) obtained from the 

GTEx Consortium was analyzed (The GTEx Consortium, 2013). Notably, the GTEx dataset 

contains a rather unique redundancy for frontal cortex and cerebellum as in a considerable 

subset of cases tissue samples from the exact same individuals were re-sampled and measured 

by two independent laboratories. Although minor variations are expectable based on the 

inevitable differences in sampled tissues (about 1 mm distance between the two subsequent 

sampling areas), ischemic time and handling, this redundancy gives a good opportunity to 

enhance the reliability and to test the stability of the obtained results. 

 

It has been shown recently (Lehallier, Gate, Schaum, Nanasi, Eun Lee, et al., 2019) that aging 

can be characterized by multiple, temporally separated waves of proteomic changes. Crests 

of the undulating proteome alternations are reached at ages of 34, 60 and 78 years of age and 

they are reflecting distinct biological pathways, implying profound temporal heterogeneity 

of the aging process. The crests were marked as points of interest of our transcriptome 

analysis using the GTEx data. However, the age distribution of the included patients forces 

us to compromise in this regard as there is insufficient data to study the last wave of aging 
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and sample sizes corresponding the first wave are limited. Also, as patient age is reported 

with the precision of decades in the GTEx database, we had to alter the definition of the first 

wave of aging accordingly. 

 

We decided to analyze the first and second waves of aging by comparing age ranges of 20 to 

39 with 40 to 49 for the first and 50 to 59 with 60 to 69 for the second wave. Covariate 

distributions found to be well-balanced across these subgroups, with the exception of early-

stage cerebellar aging, where mild trends of deviation from equilibrium could be found for 

both sex (pWilcoxon=0.09) and post-mortem interval (pWilcoxon=0.1) covariates. 

 

Normalized data readily available from the GTEx Portal is optimized for a subsequent eQTL-

analysis with stringent filtering criteria which is not fulfilled by the RNA probes in a uniform 

manner, resulting discrepancies in the available gene sets to work with. As our goal was 

increasing robustness through repeated measurements, we opted to re-normalize the raw 

readout data using robust multi-array analysis (RMA, (Irizarry et al., 2003)) to obtain equal 

coverage of the transcriptomic landscape. 

 

Our investigation was limited to the intersection of the set of measured genes or proteins and 

the set of traceable elements within the available Protein-Protein Interaction data. For the PPI 

framework, we have selected the SwissProt / UniProt ID system which is natively supported 

by both used interactome databases. Mapping from RNA to protein space was carried out 

using the online interface provided by UniProt (uniprot.org). In non-bijective cases when 

multiple RNA IDs could have been associated to a single UniProt entity, feature values for 

all possible ID matching combinations were calculated as described in the following sections 

and their averages were considered as the final results corresponding to entities curated in 

the PPI network. For the final useable sample sizes, please consult with Table 4. 

 



21 

 

Table 4 – Summary of analyzed transcriptomic datasets. Post-mortem interval (PMI) of the 

tissue samples and gender of donors were used as covariates. Uneven coverage across 

repeated laboratory measurements indicated by superscripts 1 and 2 ; uniform re-

normalization of raw RNA sequencing counts with RMA offered a solution to this problem. 

Tissue Phenotype 
Sample Size Genes 

Young Old 
without 

RMA 

with 

RMA 

Frontal Cortex 

(2x) 

Early Aging (20-39y → 40-49y) 6 9 136191 

136022 
15375 

Late Aging (50-59y → 60-69y) 29 39 

Cerebellum 
(2x) 

Early Aging (20-39y → 40-49y) 11 12 135701 
135032 

15375 
Late Aging (50-59y → 60-69y) 35 47 

 

 

Heterochronic parabiosis was explored using previously published measurements (Lehallier, 

Gate, Schaum, Nanasi, Eun Lee, et al., 2019) based on aptamer technology (Gold et al., 

2010). Plasma protein concentration in young and old heterochronic parabiont animals were 

compared to iso-chronic (same age) parabiotic controls. This arrangement was selected to 

rule out possible side effects of the parabiotic state, such as modified locomotion or stress 

levels which are unrelated to the rejuvenation or provoked aging effect elicited by the shared 

circulatory system. From the available protein concentration readouts, only elements with 

associable PPI nodes were processed (Table 5). 

 

Table 5 – Summary of analyzed proteomic datasets. All animals were males. 

Parabiosis 
Control 

(isochronic) 

Treated 

(heterochronic) 
Plasma proteins 

Effect on young animal 5 6 1337 

Effect on old animal 9 9 1337 

 

3.5. Classification of electrocorticography recordings using Support Vector 

Machines 
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ECoG data was processed and segmented into epochs as described above. Based on their 

channel of origin, these recordings were assigned to SOZ and non-SOZ classes and presented 

to the SVM algorithm as observations (Table 6). The Support Vector Machines were tasked 

to predict SOZ / non-SOZ labels and ultimately, to reconstruct expert opinion on SOZ / non-

SOZ status. 

 

Table 6 – Number of observations presented to the SVM algorithm 

# patient 
Observations presented to SVM 

SOZ Non-SOZ Total 

1 360 972 1332 

2 216 2088 2304 

3 360 1800 2160 

4 1008 2448 3456 

5 792 1152 1944 

6 576 2304 2880 

 

 

The ECoG signal has been filtered to seven frequency bands and power information from 

each band has been extracted prior to these steps. It has been shown previously that extra 

information on brain activity can be acquired by combining data from different frequency 

bands (Canolty & Knight, 2010; Cohen et al., 2009; López-Azcárate et al., 2010, 2013; Maris 

et al., 2011; McGinn & Valiante, 2014; Nánási et al., 2016; Scheffzük et al., 2011; Sharott et 

al., 2009; Tort et al., 2009, 2008; Van Ooyen et al., 2018; von Nicolai et al., 2014). We 

hypothesize that presenting multiband information to our machine learning model could 

enhance SOZ reproduction as well. In this merit, 8 types of SVM models have been 

constructed: in 7 cases, observations contained features only on power measured on a 

singular band, like theta- or beta powers. In the 8th case however, all band power 

measurements were condensed into feature vectors of 7 dimension representing different 

characteristics of the observations to be classified.   
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Given the heterogeneity in terms of clinical parameters, and exact grid localization and grid 

dimensions, patients were analyzed separately. In order to facilitate robustness of our 

findings, 5-fold cross-validation was used during model training and evaluation. Kernel 

choice effects were investigated by comparing the output of linear and Gaussian (RBF) kernel 

SVM models. Predictors were standardized and default kernel parameters were used. 

 

3.6. Predictome: integrating genome-wide molecular measurements with 

interactome information using Support Vector Machines 

 

In our analysis, we aimed to combine information extracted from experimental gene 

expression measurements with a priori knowledge accumulated on the functional interactions 

of the gene products on the protein level. The nascent Protein-Protein Interaction Network 

(PPI) was transformed into phenotype-specific weighted graphs (Predictomes) with link 

weights delivered from the performance of SVM models in a process described as follows. 

 

Each link (interaction) of the PPI network was considered as a separate model fitting task to 

be solved. Two continuous predictors were defined as the gene expression levels or direct 

concentration readouts corresponding to the two interacting proteins forming the link in 

question. Non-genetic covariates like sex and sample post-mortem interval (PMI) were 

included as additional predictors in case of human data. Predictors were standardized then 

the models were trained to classify the samples into younger-older or control-pathological 

groups in a binary manner. Performance was measured in the form of Matthews Correlation 

Coefficient (MCC). Samples were divided into 3 folds for cross-validation and predictive 

performances of the trained models were measured on the test sets (1/3). The procedure was 

repeated (so learning and test sets were randomized) 30 times and the resulting MCCs (3x30) 
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were averaged for each link to define its weight. Hence, Protein-Protein Interaction links 

were outfitted with SVM performance metrics on age or parabiotic state prediction. 

 

Finally, for human measurements, the resulting graph was subjected to thresholding: link 

weights were adjusted by the performance of a similarly trained and evaluated SVM model 

using only the non-genetic covariates without actual transcript data. So, corrected link 

weights in the Predictome are representing the performance gain of an SVM model outfitted 

with gene expression data corresponding to the linked nodes over the covariate-only null 

model. Negative link weights were interpreted as the inability of the model to extract excess 

information from genomic data on phenotype and therefore set to 0. Such links with zero 

weight are treated as non-existent by the subsequent algorithms employed to quantify node 

importance (see next chapters). 

 

3.7. Evaluation of SVM predictive performance: Matthews Correlation Coefficient, 

Jaccard Similarity 

 

In this work, SVM performance was measured in the form of Matthews Correlation 

Coefficient (MCC) (Matthews, 1975) between prediction and ground truth. As sample sizes 

are unbalanced, especially for ECoG data (where both the number of recording electrodes 

and the ratio of SOZ / non-SOZ classes vary across patients), MCC is a favorable choice 

(Powers, 2007) over more generic metrics, such as accuracy.  

 

To quantify results when testing model stability of replicated laboratory measurements 

(available only for human brain aging transcriptomes), Jaccard Similarity (Jaccard Index, 

Jaccard similarity coefficient) was used (Jaccard, 1912). This metric is defined as the size of 

the intersection divided by the size of the union of the sample sets (highlighted genes or 

pathways using the two replicates), and much like MCC, gives a more realistic insight on the 
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robustness of item selection tasks than sheer overlap across the highlighted elements when 

set sizes are different.  

 

3.8. Monte Carlo probability of measured Eigenvector Centrality in dataset specific 

Predictomes (pMC) 

 

To evaluate the importance of individual agents, information represented by the graph 

(Predictome) must be projected to node (gene) level. Eigenvector Centrality (Newman, 2004) 

prioritizes genes participating in multiple, highly predictive interactions and genes forming 

highly predictive interactions with the ones falling into the former category. Its “recursive 

logic” practically generates high scores based on local importance and spreads that through 

the network via strong links, thereby extends the influence of the nodes in the topological 

space. The metric has been shown to be informative in various biological problems, including 

functional brain network studies (Gao et al., 2019; Skouras et al., 2019) and cancer genomics 

(Al-Aamri et al., 2019), and thought to emphasize elements of central super-regulatory role 

or a critical targets of regulatory pathways (Vella et al., 2017). In our case, it naturally 

highlights genes whose expression levels are individually correlated to group affiliation and 

also, it favors contributors of interactions where neither gene’s expression level, but their 

combined information (such as expression ratio) could be used as a successful predictor of 

phenotype. 

 

However, (weighted) graph centrality measurements in general are heavily influenced by 

sparsity features of the (unweighted) network, such as local density and node degree. To 

avoid focusing on genes solely by their central position in the unweighted PPI network, 

Monte Carlo analysis has been conducted whereas link weights were shuffled between the 

existing connections, and node scores were re-calculated 100 000 times. Final node 

significance level was assigned based on the number of times the actual measurement-based 
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value surpassed the ones delivered from those surrogate networks in the form of Monte Carlo 

probability of measured Eigenvector Centrality, pMC (see Figure 1). 

 

Figure 1 – Calculating Monte Carlo probability of measured Eigenvector Centrality (pMC) in the 

dataset specific Predictomes. Predictome link weights were defined as increase of Matthews 

Correlation Coefficient (MCC) in the phenotype prediction task while having access to gene 

expression information on the linked elements, compared to models outfitted with covariate data only. 

While keeping the unweighted topology of the PPI network intact, assigned link weights were 

shuffled randomly 100 000 times and Eigenvector Centrality (EC) values of the nodes were 

recalculated for these networks, and compared to EC delivered from actual measurement data. Monte 

Carlo probability expresses the rate on which the measured EC surpasses the surrogate values, hence, 

quantifies its per-node significance corrected to unweighted network topology. 

3.9. Control model excluding PPI information 

 

To evaluate the influence of the integrated PPI information on robustness and interpretability, 

an alternative model has been constructed where SVMs had to rely only on individual gene 

expression data instead of gene pairs to predict phenotype. Other steps of the workflow (i.e. 

inclusion of covariates, cross-validation and performance metrics) were similar. The 
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investigated gene space was restricted to PPI-traceable elements to facilitate comparisons 

with the integrative model. In cases of unambiguous transcriptome readout to protein 

projections, all possible solutions have been examined and results were averaged. Given the 

limitation that the surrogate approach cannot be used without the inclusion of the network 

which weights to be randomized, nodes were simply ranked by their predictive performance 

on group affiliation. 

 

3.10. Pathway Analysis, Sliding Enrichment Pathway Analysis (SEPA) 

 

Pathway Analysis (PA) is a widely used concept in the interpretation of high throughput 

genome-wide data. Most forms of PA are employing the calculation of statistical enrichment 

of biologically annotated elements among genes highlighted by a former step of the analytic 

workflow to quantify their functional attunement. The consensual biological processes and 

the corresponding lists of genes related to them are curated in various functional annotation 

databases (Ashburner et al., 2000; Fabregat et al., 2018; Kanehisa & Goto, 2000). Although 

progressive, integrative frameworks capable to handle several functional annotation systems 

parallelly are gaining momentum (D. W. Huang et al., 2009), serious questions have been 

emerged regarding to their reliability (Wadi et al., 2016b, 2016a). Sticking with self-

contained platforms, we have opted to employ Reactome (Fabregat et al., 2018) as our 

standard testing library. With its relatively confined semantic space this annotation system 

allowed further robustness and dimension reduction as the number of investigated 

gene/protein entities exceeded the quantity of the associated terms more than sevenfold. 

 

The exact methodology of performing the statistical calculations in PA is nontrivial and still 

forms a subject of heavy research and development (García-Campos et al., 2015). 

Overrepresentation analysis (ORA, (Dopico et al., 2015; Wang et al., 2013; Zeeberg et al., 

2003)) is regarded as a conservative standard in the field (García-Campos et al., 2015). In 
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this work, we resorted on the closely related Sliding Enrichment Pathway Analysis (SEPA, 

(Lehallier, Gate, Schaum, Nanasi, Eun Lee, et al., 2019)) which enhances the process of 

cutoff selection by considering the ranking of selected genes of interest. Within SEPA, 

functional enrichment for Reactome terms was quantified using Fisher’s exact test (Fisher, 

1922) in an iteratively broadened list of top scoring elements, with increments of 1 until 

covering all genes with significant pMC (see previous chapters). FDR correction was carried 

out according to Benjamini and Hochberg (Benjamini & Hochberg, 1995). Phenotype-

associated Reactome terms were required to be consistently significant (q < 0.05 for at least 

20 incremental lists). 

 

3.11. Selection of critical pathways and genes, and data visualization 

 

Visualization and outline the most important results from analyses of genomic scale is 

challenging. Enriched pathways can be highly redundant because of the embedded 

hierarchical structure of molecular biology terms (like S phase is a subcategory of Cell cycle 

phases). The goal is providing a concise summary of functional changes of genome activity 

landscape. 

To achieve this in an unbiased, data-driven way, the hierarchical network of Reactome terms 

(available on Reactome.org) was regarded as an unweighted network, then subjected to 

modularization using the Louvain algorithm (Blondel et al., 2008). The resulting modules 

representing groups of terms densely connected in the Reactome network and expected to 

share biological meaning. Then, top-scoring pathways were picked separately from each of 

these modules. 

 

3.12. Comparison with literature 
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Highlighted gene and pathway sets were compared with literature data to verify the integrity 

of our results in an unbiased way. Literature mining has been performed in PubMed abstracts 

and co-occurrence of gene or pathway names with keywords (“Aging”, “Age-related”) have 

been counted. Additionally, the GenAge database (De Magalhães & Toussaint, 2004) has 

been queried for genes. 

 

Overrepresentation of GenAge membership was quantified using Fisher’s exact test. Gene 

or pathway name frequency in aging-related PubMed abstracts was subjected to a Wilcoxon 

rank sum test, comparing these metrics delivered for highlighted and non-highlighted items. 
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Figure 2 – Overview of the Predictome approach used in this thesis. Genome-wide RNAseq measurements 

were compared across younger and older subjects with small age differences, corresponding to the first and 

second waves of aging (see Methods, chapter 4). The network of a priori known protein interactions (Methods, 

chapter 3) was outfitted with weights using performance metrics of Support Vector Machine models tasked to 

predict phenotype from measurements associable to the linked entities. This empirically weighted graph was 

termed as the Predictome (Methods, chapters 6 and 7). Individual gene importance was determined by 

Eigenvector Centrality. To compensate for topological biases, actual measurement values were compared with 

results arising from surrogate networks with shuffled edge weights, then genes were ranked based on the Monte-

Carlo significance of their Eigenvector Centrality (Methods, chapter 8). Finally, functional attunements of 

ranked gene lists were explored by Sliding Enrichment Pathway Analysis performed in the Reactome term 

space (Methods, chapters 10 and 11). 
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3.13. Coverage of the genomic analysis 

 

Based on the available genome-wide RNAseq data, the interactome network (PPI) could be 

outfitted with link weights and node-level statistics with good coverage. Brain aging data 

readily available from the GTEx Portal could be matched to 84.4-85.1% of the curated 

proteins and to 80.2-80.3% of the interactions. Our RMA re-normalization of raw GTEx data 

enhanced both of those metrics to 96.0-96.1%. For pathway analysis, 2190 (97.8%) from the 

total of 2240 Reactome terms could be associated to entities enlisted in our merged PPI 

database. Also, from the 16005 PPI-trackable entities, 9401 (58.7%) could be directly linked 

to biological functions using Reactome. Direct proteomic measurements in mouse blood 

plasma covered only a modest 8.35% of the PPI space, which were found to be associable to 

1590 Reactome terms (71%). It’s noteworthy that albeit the overlap across the item sets 

curated in Reactome and our PPI framework is not perfect, the transcripts or proteins directly 

not associable to Reactome terms can still influence the enrichment scores via local and 

global interactome topologies when using the network-based models. 

 

3.14. Implementation notes 

 

RMA normalization of raw sample readouts was performed with the YARN package 

(Paulson J, Chen C, Lopes-Ramos C, Kuijjer M, Platig J, Sonawane A, Fagny M, Glass K, 

2019) and literature mining using custom written scripts in the R software environment. 

Other parts of the analysis and visualization were carried out in MATLAB. Computationally 

intensive tasks (such as model fitting and Monte Carlo statistics) were performed on a dual 

Intel Xeon E5-2680v2 system outfitted with 20 physical processor cores and 56 GBytes of 

RAM, using custom-written, highly parallelized MATLAB scripts. 
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4.  RESULTS 

 

4.1. Seizure Onset Zone detection requires information from multiple frequency 

bands 

 

Relying on single-band power features, regardless of the used frequency band or applied 

kernel transformations, SVM was unable to find separation planes reliably sorting epoch data 

to SOZ or non-SOZ origin. In other words, the machine learning algorithm failed to identify 

rules providing similar results to judgement of neurologist experts. Still, differences between 

distinct frequency band and kernel performances exist. 

In contrast, SVM models outfitted with full spectral information provided better results for 

both linear and Gaussian approaches. Importantly, Gaussian kernel SVM employing multiple 

frequency band powers as feature vectors was able to reproduce expert decisions with great 

fidelity in all patients. Ability of different models to highlight epochs of SOZ origin 

summarized in Table 7 below, in terms of Matthews Correlation Coefficient. 
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Table 7 – Summary of model fitting results to reproduce expert Seizure Onset Zone selection 

using different SVM kernels and frequency band information: Matthews Correlation between 

prediction and ground truth. For all patients, combining full spectral information and 

Gaussian kernel transformations provided the best results (bold, black). Linear SVM 

achieved comparable performance only with combined spectral information for patients #1 

and #2. Access to the full spectrum resulted in dramatic improvements in model fitting in 

case of patient #2 when using linear SVM and for patients #3, #4, and #6 with Gaussian 

kernel, emphasizing the importance of information encoded in cross-frequency relationships. 

Interestingly, for patients #1 and #5, the restricted use of the gamma frequency range 

produced virtually identical output with both kernels (bold, red), indicating the presence of 

linearly separable epileptic patterns in some cases. 

 

 Linear SVM Gaussian kernel SVM 

patient / 

frequency 
#1 #2 #3 #4 #5 #6 #1 #2 #3 #4 #5 #6 

slow delta 0 0 0 0 0 0 0.2 0.33 0 0 0.21 0.08 

fast delta 0.26 0 0 0 0 0 0.31 0.07 0 0 0.23 0.12 

theta 0.26 0 0 0 0 0 0.3 0.1 0 0 0.22 0 

alpha 0 0 0 0 0 0 0 0 0 0 0.27 0 

beta 0 0 0 0 0 0 0.09 0 0 0 0.32 0 

slow gamma 0.45 0 0 0 0.24 0 0.45 0 0 0.03 0.24 0 

fast gamma 0.37 0 0 0 0.22 0 0.37 0.05 0 0 0.23 0 

COMBINED 0.58 0.39 0 0 0.27 0 0.65 0.4 0.44 0.29 0.49 0.37 
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Seemingly, linearly separable, and more complex cases are both present in this model fitting 

task. SVM was able to approximate expert SOZ detection (hence fit the model to replicate 

that decision) operating within the untransformed measurement space in cases of patient #1 

and #2 and proven to be partially successful with patient #5. In two cases, the decisions were 

largely driven by information present in the gamma frequency range. However, sometimes 

single-band data is not enough to highlight the SOZ. For patient #2 in the linear, and for 

patient #3 in the Gaussian feature space, the SVM purely relies on cross-frequency 

constellations. 

To analyze our results in a greater detail, SVM classification results were projected to the 

reconstructed anatomical positions of the ECoG electrodes. Also, principal component 

analysis (PCA) using the whole spectral information was performed on individual epochs 

(observations), then, SVM predictions on SOZ status were visualized in the PCA space. On 

the following pages we provide some examples. Defining successful models by the ability to 

classify epochs originating from SOZ electrodes as epileptic with greater likelihood than 

epochs of non-SOZ origin, slow rhythm data alone was sufficient to fit our models to clinical 

data for 4 out of 6 patients. For this performance, however, the SVM models had to exploit 

Gaussian kernel transformations (Figure 3). In contrast, fast rhythms enabled the machine 

learning algorithm to pinpoint the SOZ even without kernel transformations for patients #1 

and #5. Solutions provided by linear and Gaussian models are remarkably similar, both in 

the anatomical and in the PCA space (Figures 4-5). 

Results provided by models given access to the whole frequency spectrum information were 

generally superior. Both linear SVM and Gaussian kernel SVM could combine band power 

data synergistically (Figures 6-7).  
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Figure 3 – visualization of Gaussian kernel SVM classification using the slow delta band. On the 

reconstructed anatomical images, grey shading marks the clinical SOZ. Rate of epileptic classification 

of epochs originating from ECoG electrodes indicated with coloring with red zones representing the 

highest value. Below, individual epochs visualized in PCA space, differentiating true positive (TP), 

true negative (TN), false positive (FP), and false negative (FN) categories.  
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Figure 4 – visualization of linear SVM classification using the slow gamma band. On the 

reconstructed anatomical images, grey shading marks the clinical SOZ. Rate of epileptic classification 

of epochs originating from ECoG electrodes indicated with coloring with red zones representing the 

highest value. Below, individual epochs visualized in PCA space, differentiating true positive (TP), 

true negative (TN), false positive (FP), and false negative (FN) categories.  
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Figure 5 – visualization of Gaussian kernel SVM classification using the slow gamma band. On the 

reconstructed anatomical images, grey shading marks the clinical SOZ. Rate of epileptic classification 

of epochs originating from ECoG electrodes indicated with coloring with red zones representing the 

highest value. Below, individual epochs visualized in PCA space, differentiating true positive (TP), 

true negative (TN), false positive (FP), and false negative (FN) categories. 
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Figure 6 – visualization of linear SVM classification combining all spectral features. On the 

reconstructed anatomical images, grey shading marks the clinical SOZ. Rate of epileptic classification 

of epochs originating from ECoG electrodes indicated with coloring with red zones representing the 

highest value. Below, individual epochs visualized in PCA space, differentiating true positive (TP), 

true negative (TN), false positive (FP), and false negative (FN) categories. 
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Figure 7 – visualization of Gaussian kernel SVM classification combining all spectral features. On 

the reconstructed anatomical images, grey shading marks the clinical SOZ. Rate of epileptic 

classification of epochs originating from ECoG electrodes indicated with coloring with red zones 

representing the highest value. Below, individual epochs visualized in PCA space, differentiating true 

positive (TP), true negative (TN), false positive (FP), and false negative (FN) categories. 
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4.2. Predictome-based transcriptome analysis highlights functionally related genes 

 

Ranked gene lists delivered by various methods were analyzed using the SEPA method. 

Effects of algorithmic choices (normalization method, SVM kernel, inclusion of interactome 

data) on the functional interpretability of detected genomic changes were explored, 

quantified as the abundance of enriched pathways. We focused on data corresponding to the 

second wave of aging (50-59y to 60-69y) for this exploratory step due to sample size 

limitations (early aging) or weaker genomic coverage (blood plasma) in other datasets. 

 

Regardless to the used SVM kernel and normalization method, extensive interactome areas 

could be highlighted in the prediction-weighted network. The number of proteins associable 

to nodes with significantly changed Eigenvector Centrality values ranged from 1411 to 1925, 

covering 8.82-12.03% of the 16005 PPI nodes. RMA renormalization raised those values to 

1647-2530 (10.29-15.81%) indicating the increased sensitivity of the refined analysis. 

 

Inclusion of Protein-Protein Interactome (PPI) information seemingly guided the selection 

process towards enhanced interpretability in context of a priori biological knowledge curated 

in the Reactome database. Depending on parameter settings, the integrative analysis yielded 

140 to 378 significant FDR-corrected enrichment probabilities, highlighting 6.39-17.26% of 

the Reactome namespace (n=2190). 

 

Considering network topology, so the information stored in the nascent PPI graph describing 

the co-dependent relationships of the studied genomic variables, found to be instrumental to 

reach that kind of semantic abundance. We have also examined the available transcriptomic 

data on a single-gene basis and ranked the associable proteins according to model predictive 

performance. Such process favors proteins with corresponding RNA levels showing 

straightforward correlation to group affiliation in case of linear kernel models; more 
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complicated relationships, such as U-shaped responses can be handled by the Gaussian 

kernel. Using those ranked lists, sets were selected with sizes matching the ones highlighted 

by the integrative method. Despite the obvious gene-level correlations with aging, the 

abundance of enriched Reactome terms within those sets was strikingly low, especially for 

the cerebellum. Interestingly, linear SVM outperformed the Gaussian kernel variant 

regardless of data normalization method, reaching a maximum of 46 enrichment hits (2.1% 

of the Reactome namespace). Results summarized in Table 8. 

 

Table 8 – Abundance of significantly changing genes and highlighted Reactome terms within 

those sets. Inclusion of Protein-Protein Interactome information enhanced the Reactome-

based interpretability of the highlighted items. 

 

database 

renormalize

d 

with RMA 

changing genes 

( pMC < 0.05 ) 

enriched Reactome terms 

without PPI with PPI 

linea

r 

Gaussia

n 

linea

r 

Gaussia

n 

linea

r 

Gaussia

n 

Cerebellum #1 yes 2115 1708 0 0 232 197 

Cerebellum #2 yes 1959 1647 2 1 316 293 

Frontal Cortex #1 yes 2530 2313 46 0 351 140 

Frontal Cortex #2 yes 2305 2401 4 11 378 258 

Cerebellum #1 no 1929 1796 2 0 140 367 

Cerebellum #2 no 1411 1925 0 0 332 368 

Frontal Cortex #1 no 1773 1577 21 0 317 186 

Frontal Cortex #2 no 1849 1575 43 10 358 277 

 

 

4.3. Interactome information enhances reproducibility of Pathway Analysis results 
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Similarly, the second wave of aging has been studied to gather insights on parameter choice 

effects on robustness. Regardless of the inclusion of PPI information, linear kernel SVM 

models produced a Jaccard similarity of 0.29-0.31 across highlighted gene sets, whereas 

Gaussian kernels reached a value of 0.13-0.18 in this respect when using RMA normalized 

data. Without renormalization, those values were more modest, ranging from 0.19 to 0.24 in 

case of the linear and from 0.13 to 0.14 with the Gaussian kernel. Importantly, linear SVM 

provided a better agreement across repeated measurements in all cases. 

 

Interpretability of gene lists derived with or without integrating the PPI information to the 

workflow showed stark differences. Robustly enriched terms were virtually absent with 

traditional analysis. On the other hand, the integrative approach showed much higher 

replicability both within and across normalization protocols: term set Jaccard similarities for 

repeated measurements always exceeded the corresponding values delivered for individual 

genes. Again, linear SVM surpassed the Gaussian kernel in terms of consistency. Mean 

Jaccard similarity across tissues reached 0.38 with and 0.28 without RMA renormalization, 

whereas Gaussian model performances averaged only between 0.21 to 0.23 (see Table 9). 

 

As reproducibility poses a key challenge on the field, we decided to use this verification step 

to empirically select the most robust normalization and kernel combination to be employed 

for detailed analysis of the available genomic datasets. Therefore, in the next chapters, we 

are focusing on the results delivered by linear SVM models on data refined by RMA 

normalization. 

 

 

Table 9 – Reproducibility of highlighted genes and Reactome terms across redundant 

measurements in the GTEx transcriptomic database. Cerebellar and cortical brain samples 
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were re-sampled with approx. 1 mm spatial differences and processed via similar protocols 

by independent laboratories. For RMA normalization, raw readouts were reprocessed. 

Transcriptome data was projected to nodes (proteins) in the unified Protein-Protein 

Interaction (PPI) network. SVM prediction of age range (50-59y versus 60-69y) was 

performed using information corresponding to singular gene expression or to pairs of 

interacting elements in the PPI network – usage of the PPI data was noted in the latter case. 

Gene similarity values indicating the robustly highlighted nodes of the PPI network and 

Reactome values are referring to enriched term sets within these sets. 

 

tissue (2x) 
renormalized 

with RMA 
use PPI 

SVM 

kernel 

genes Reactome terms 

overlap Jaccard overlap Jaccard 

Cerebellum yes yes linear 955 0,31 169 0,45 

Cerebellum yes yes Gaussian 389 0,13 73 0,18 

Frontal Cortex yes yes linear 1044 0,28 173 0,31 

Frontal Cortex yes yes Gaussian 648 0,16 78 0,24 

Cerebellum yes no linear 972 0,31 0 0,00 

Cerebellum yes no Gaussian 423 0,14 0 0,00 

Frontal Cortex yes no linear 1098 0,29 1 0,02 

Frontal Cortex yes no Gaussian 725 0,18 0 0,00 

Cerebellum no yes linear 532 0,19 89 0,23 

Cerebellum no yes Gaussian 470 0,14 148 0,25 

Frontal Cortex no yes linear 664 0,22 163 0,32 

Frontal Cortex no yes Gaussian 371 0,13 77 0,20 

Cerebellum no no linear 627 0,23 0 0,00 

Cerebellum no no Gaussian 436 0,13 0 0,00 

Frontal Cortex no no linear 702 0,24 13 0,25 

Frontal Cortex no no Gaussian 360 0,13 0 0,00 
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4.4. Interactome information enhances robustness and abundance of pathway 

enrichment in top gene sets 

 

As we have seen in the previous chapter, aging results in profound changes of the 

transcriptomic landscape. The genes of significantly altered expression levels or significantly 

changed centrality in the Predictome network are numerous. This level of abundance, 

however, could hinder interpretation: ranking on a finer scale is needed to pinpoint the most 

important elements instead of highlighting roughly 10% of the genome. 

In this merit, we explored the robustness of ranking across analyses stemmed from repeated 

laboratory measurement data. For Predictome results, primary ranking was performed 

according to Monte Carlo probability of Eigenvector Centrality (pMC) and ties resolved 

according to single-gene SVM performance. 

 

The issue of reproducibility turned out to be especially severe when only a small number of 

critical genes were selected and somewhat ameliorated as the set size increased, implying 

considerable stochasticity of gene ranks across repeated experiments. Interestingly, 

Predictome approach enhanced the robustness of gene selection predominantly when 

working with smaller set sizes, sometimes doubling the overlap across repeated 

measurements compared to single-gene analysis. 

Interpretability of gene lists derived with or without the Predictome showed stark differences 

with pathway analysis. When relying only on gene expression data to define top gene sets, 

significant Reactome term enrichments were scarce and heavily cutoff-dependent. The 

maximum number of highlighted pathways was 12 and importantly, neither of these results 

could be replicated. Incorporating network information yielded more voluminous and 

balanced interpretability with considerable reproducibility across repeated measurements 

(Figure 8). 
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Figure 8 – Reproducibility of gene sets and enriched Reactome term sets within them as a 

function of selected gene set size. Solid lines: genes were ranked using the Predictome 

approach; dotted lines: only singular gene expression was used for ranking. Decreasing 

line thickness indicating the points where Monte Carlo probabilities of Eigenvector 

Centrality elevation (pMC) in the Predictomes are reaching 0.00001, 0.0001 and 0.001, 

respectively. For both samples in the frontal cortex (FCX) and for late aging in the cerebellum 

(CBE), the Predictome approach stabilizes gene selection across repeated experiments and 

enables more robust critical set definition especially when working with stringent cutoffs. 

However, reproducibility suffers considerably when the group balances are compromised as 

we see in the case of early cerebellar aging. Differences between the two approaches are 

becoming even more pronounced when the results are projected to the enriched term space. 

Without Predictome, no significant pathways could be confirmed after FDR correction. In 

contrast, the network-based technique yielded considerable reproducibility of biological 

interpretation. 
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Taken together, Predictome models based on linear SVM were required to study functional 

attunement of gene sets of reasonable size in a reproducible manner. This effect can be linked 

to the enhanced sensitivity of the approach and its tendency to select functionally related 

gene groups. Inclusion of network information apparently ameliorates stochasticity of 

individual gene measurements, supposedly by introducing an adaptive filtering on the 

detected transcriptomic changes operating along interactome connectivity. Functional 

regions of the interactome tend to form densely connected regions (modules). Given the 

interlinked nature of elements populating those regions, highly predictive genes on 

phenotype could elevate the score of their interacting partners, thereby effect the ranking of 

the whole functional module. 

 

4.5. SVM unmasks biological information embedded in gene product interactions 

 

In the previous chapter, we have shown the enhanced effectivity of the Predictome approach 

to select functionally related gene sets associable to phenotype in a robust manner. This effect 

could be partially achieved by the spread of node importance to adjacent neighbors in the 

interactome network. If expression level of a gene correlates strongly with phenotype, all 

models involving this gene – like with all its interaction partners in the PPI – will have good 

predictive performance on phenotype. Here, we asked whether all the benefits of the 

Predictome approach could be explained by this effect, or the machine learning algorithms 

can extract extra information on phenotype, inaccessible to methods operating only on 

singular gene expression levels. 

 

Strikingly, we found that in multiple occasions link based SVM models could predict group 

affiliation even if the genes associated to the link in question did not show altered expression 

when analyzed separately. In multiple cases, not the gene expression levels themselves, but 

their ratio was informative. Figure 9A illustrates how this integrated analysis can unmask 
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information by combining pairs of genes. For example, the expression of TUBB4B and 

TUBG1 which are two Tubulin genes, major constituent of microtubules, did not change 

during aging but their relative concentration shifted from TUBG1 to TUBB4B dominance in 

older individuals. In fact, the complementary information brought by connected genes 

improved age prediction for 43,000+ interactions (22-23% of the literature-based PPI 

network, Figure 9B). 
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Figure 9 – A) PPI-driven linear SVM models reveal higher order relationships between gene 

products and phenotype. In our example, middle-aged and older individuals can be separated 

along the expression ratio of two tubulins in the neocortex. Taken separately, levels of 

TUBB4B and TUBG1 are not correlated with aging. However, their relative concentration 

shifts from TUBG1 to TUBB4B dominance in older individuals – a feature that can be 

exploited by the linear SVM model when given access to expression levels of both genes 

simultaneously. SVM performance was quantified using Matthews Correlation Coefficient 

(MCC) between prediction of group affiliation and ground truth. B) Performance of SVM 

models combining gene expression information corresponding to linked genes, compared to 

performance achievable using the linked genes separately (neocortex, later stage of aging). 

In case of the instances below the diagonal of equal performance, no extra information can 

be extracted by combining the linked genes: the increased model complexity compromises 

generalization and the measured performance of the model drops. However, massive 

performance gain upon combining expression information of the linked genes is a feature 

exhibited by a considerable fraction (22-23%) of all interactions. 
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4.6. Genes influenced by Brain Aging and Parabiosis are forming a continuous 

network in the Interactome 

 

As mentioned in the previous chapters, biological functions tend to be associated to 

interacting genetic elements. These continuous subnetworks could represent pathways of 

related biological processes. Here, we wanted to see whether aging-related changes are 

emerging in an orchestrated way in the Interactome or are they affecting random, disjunct 

subnetworks in a more stochastic fashion. Also, our goal was to visualize the most important 

aging genes selected by our novel integrative approach. 

 

Inclusion criteria for visualization and annotation were the following. First, the most robust 

aging genes were picked, reaching repeatedly significant Eigenvector Centrality change in at 

least two redundant database pairs. Therefore, confirmed association with both aging stages 

or with both brain areas was required. Then, form the two replications, the weaker pMC was 

considered for each gene. Early Brain Aging and Late Brain Aging scores were calculated as 

the means of these values across frontal cortex and cerebellum. Second, genes influenced by 

Parabiosis (either by provoked aging in young animals or rejuvenation in old animals) were 

added to this list. As changes of opposite direction are expectable in this setup, the stronger 

pMC value was used as a Parabiosis score. Genes annotated in detail if they have reached 

significant score in at least two out of the three categories (Early Aging, Late Aging, 

Parabiosis). 

 

Within these constraints, 658 genes were selected for visualization and 21 genes for detailed 

annotation. Interestingly, 635 of the corresponding proteins are forming a densely connected, 

continuous subnetwork with 2751 interaction links, indicating their functional relatedness 

(Figure 9). Detailing the most important elements of this network, we present the pMC 

statistics of the annotated genes from Figure 10 in Table 10. 
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Figure 10 – Genes associable to brain aging in a robust manner and to proteins influenced 

by heterochronic parabiosis. Colored nodes representing genes relatable to the studied 

phenomena based on their elevated Eigenvector Centrality (pMC) in the phenotype specific 

Predictomes. Lines symbolizing curated interactions of corresponding proteins in the PPI 

database, with colors showing performance of linear SVM models predicting phenotypes 

from data corresponding to the linked elements. Aging- and parabiosis-related genes are 

forming a densely connected, continuous subnetwork of 635 nodes and 2751 links within the 

Interactome. 23 unconnected nodes were omitted for visual clarity. 
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Table 10 – Annotated genes (elements linked to multiple phenotypes) from the aging- and 

parabiosis-associated subnetwork. For aging phenotypes, the higher pMC values (weaker 

significance) are shown across the two repeated measurements. Zero values for aging 

phenotypes indicating that the Eigenvector Centrality of the given node surpassed all 100 000 

surrogate networks in both sample repeats. In case of Parabiosis, pMC values delivered from 

the provoked Aging experiment (young animal exposed to old blood) and from the 

Rejuvenation experiment (old animal exposed to young blood). Co-occurrence in PubMed 

abstracts with words “Aging” or “Age-related” noted in the last column. 

 

phenotype 

/ gene 

Early Aging Late Aging Parabiosis PubMed 
references

(n) FCX CBE FCX CBE Aging Rejuv 

GFAP 0,04618 0,89246 0 0 0,02041 0,00629 1078 

DUSP3 0,01713 0,84682 0,00573 0,00024 0,44025 0 2 

GSTP1 0,00212 0,98645 0,00413 0,00011 0,6301 0 114 

ACP5 0,99866 0,84459 0,01412 0,03001 0,13265 0 15 

MAPK9 0,75672 0,9692 0 0,00001 0,11141 0 3 

TLR4 0,9965 0,80845 0 0,00007 0,24302 0,00515 357 

PRKACA 1 0,67405 0 0,14078 0,99297 0,0215 3 

CDH5 0,99885 0,9027 0,14664 0,00005 0,82445 0 4 

CDK2 0,00791 0,00013 0 0 0 0,99908 119 

CSNK2B 0 0,02298 0,99877 0,9101 0 1 0 

MCL1 0,00718 0,0138 0,92404 0,95179 0,00154 0,98634 26 

RB1 0,00309 0,00196 1 0,88581 0,03022 0,95399 80 

RAD51 0 0,18618 0,99863 1 0,00104 0,99714 94 

MAPK8 0,00207 0,5909 0 0 0,00012 0,74381 55 

DDR1 0,318 0,96329 0 0,00374 0,04086 0,64804 7 

FYN 1 0,99991 0 0 0,01434 1 65 

PRKCA 1 0,61468 0,00082 0 0,00173 0,20939 20 

IL15RA 0,51837 1 0,08654 0,00079 0,00564 0,94887 6 

TMEM54 0,02205 0,0209 0,00406 0 1 1 0 

SLC9A3R

2 

0,0277 0,14006 0,00198 0,11871 1 1 0 

PPP1R1B 0,10612 0,00661 0,12745 0 1 1 15 
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A control analysis using the STRING database (Szklarczyk et al., 2017) confirmed the 

existence of the highly connected aging subnetwork. This alternative repository of PPI 

information has wider coverage but in general, less reliable than the sources we used as it 

incorporates predicted and supposed interactions as well as experimentally confirmed links. 

Curated connections outfitted with a heuristic reliability parameter which can be tuned. At 

medium confidence (standard usage of the STRING web interface) our aging- and parabiosis-

related genes formed a dense network with 7036 links. Number of connections decreased 

when using higher confidence cutoffs, resulting in 2989 links with high and 2177 links with 

highest confidence. Regardless of the parameter settings, enrichment for interactions within 

the selected set was highly significant (p < 10-16 in all cases) indicating the presence of the 

aging subnetwork. 

 

Literature mining confirmed the relevance of both the broaden set presented in Figure 9 and 

the narrower list detailed in Table 10. From the 317 genes mutually listed in the GenAge and 

our PPI databases, 62 was part of the highlighted aging network (pFisher = 3.3*10-25). Mutual 

appearance in PubMed abstracts with keywords “Aging” (pWilcoxon = 1.5*10-78) and “Age-

related” (pWilcoxon = 8.7*10-67) was more frequent compared to another genes. The annotated 

subset was also enriched in GenAge elements (2.5*10-6) and overrepresented in the literature 

for “Aging” (pWilcoxon = 7.5*10-7) and “Age-related” (pWilcoxon = 1.3*10-7). 

 

Taken together, Predictome analysis of aging produced results in line with the literature. 

Also, our results are suggesting that the aging associated Interactome changes are occurring 

in a highly orchestrated manner. 
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4.7. Pathway Analysis reveals shared aspects of Brain Aging and Parabiosis 

 

Comparative analysis of the single-gene and Predictome-based approaches revealed the most 

profound differences in terms of functional enrichment abundance and stability across 

repeated measurements. In fact, replicable elements on single-gene basis were scarce, 

implying low level of reliability. Therefore, we aimed to give a broad overview of the aging-

associated biological processes suggested by our novel, presumably more robust method. In 

this merit, we visualized the hierarchal tree of Reactome terms as an unweighted graph using 

the force-directed layout (Fruchterman & Reingold, 1991) which represents functionally 

related or embedded biological processes as adjacent nodes. Aging-related elements were 

highlighted in this semantic network in Figure 11. 

 

271 pathways were selected based on their robust significance across repeated transcriptomic 

measurements of human brain aging or their association to either rejuvenation or provoked 

aging in the parabiotic state. From these items, 5 found to show universal association to all 

human brain aging datasets and furthermore, influenced by the parabiotic state. “Gene 

expression (Transcription)”, “Generic Transcription Pathway”, “RNA Polymerase II 

Transcription” are umbrella terms denoting widespread changes of the gene expression 

machinery, however, “SUMOylation” and “SUMO E3 ligases SUMOylate target proteins” 

are more specific hits, emphasizing the importance of regulation through small ubiquitin-like 

modifier proteins in the aging process. Four Reactome terms found to be robustly, but 

exclusively enriched in early aging and all of them were related to “mRNA Splicing”. The 

exclusive set of late aging consisted of 108 elements describing various biological concepts 

from “Hemostasis”, “Axon guidance” and “Integration of energy metabolism” to 

widespread examples of innate immune functionality, including “Toll-like Receptor 

Cascades”, “Signaling by Interleukins” and “Inflammasomes”. The parabiosis-specific set 

was populated by 145 items with emphasis on “Cell Cycle”, “DNA Repair”, “Metabolism 

of proteins” and on “Terminal pathway of complement”, among others. 
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Interestingly, the later phase of human brain aging was characterized by multiple key 

pathways which in turn were also affected by the parabiotic state. This intersection consisted 

of 9 elements: “Apoptosis”, “Programmed Cell Death”, “Cellular Senescence”, “Signal 

Transduction”, “Signaling by Non-Receptor Tyrosine Kinases”, “Transcriptional 

regulation by RUNX2”, “Signaling by PTK6”, “Signaling by TGF-beta family members” 

and “Signaling by TGF-beta Receptor Complex”. 
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Figure 11 – Reactome terms associable to brain aging in a robust manner and to proteins 

influenced by heterochronic parabiosis. Colored nodes representing pathways relatable to the 

studied phenomena based on SEPA analysis in the phenotype specific Predictomes. Lines 

symbolizing hierarchal, embedded relationships within Reactome. 
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Table 11 – Annotated pathways in provoked Parabiotic Aging and Rejuvenation and their 

level of significance in various phenotypes 

 

 

 

phenotype /  

Reactome 

Early Aging Late Aging Parabiosis 

FCX CBE FCX CBE Aging Rejuv 

Signaling by PTK6 0,308901 0,778412 0,027576 0,000171 0,228307 0,005993 

Signaling by Non-Receptor Tyrosine Kinases 0,308901 0,778412 0,027576 0,000171 0,228307 0,005993 

ERBB2 Regulates Cell Motility 0,999998 0,999896 0,176781 0,144783 1 0,000705 

Terminal pathway of complement 1 1 0,89668 0,996631 0,760494 0,009096 

Regulation of Insulin-like Growth Factor (IGF) transport 

and uptake by Insulin-like Growth Factor Binding Proteins 

(IGFBPs) 

0,73741 0,941316 0,739409 0,894856 0,470105 0,009681 

Cargo recognition for clathrin-mediated endocytosis 0,142846 0,999926 0,56716 0,232165 0,391144 0,021765 

Diseases associated with glycosaminoglycan metabolism 1 0,885389 0,64055 0,453806 1 0,043045 

A tetrasaccharide linker sequence is required for GAG 

synthesis 
0,967559 0,875458 0,6086 0,30827 1 0,049615 

RNA Polymerase II Transcription 1,69E-14 5,89E-08 0,017797 0,002455 1,75E-06 0,864056 

Gene expression (Transcription) 3,02E-14 5,7E-08 0,02268 0,007328 1,82E-06 0,868246 

Generic Transcription Pathway 1,21E-10 5,7E-08 0,005318 0,000481 6,17E-06 0,864056 

SUMOylation 9,08E-07 0,026086 0,00747 0,004153 0,000474 0,397644 

SUMO E3 ligases SUMOylate target proteins 4,08E-07 0,027102 0,005593 0,003283 0,000474 0,397644 

Signaling by TGF-beta Receptor Complex 0,00034 0,46144 0,01994 0,030514 0,005791 0,645971 

Signaling by TGF-beta family members 0,003509 0,48529 0,00719 0,011512 0,030987 0,535967 

Apoptosis 8,37E-05 0,384223 0,001968 0,003426 0,018656 0,958091 

Programmed Cell Death 6,13E-05 0,387947 0,001365 0,004712 0,01915 0,917063 

Cellular Senescence 0,001342 0,360332 1,58E-06 0,007685 0,019964 0,728074 

Signal Transduction 0,027697 0,267301 6,12E-09 8,86E-11 0,040277 0,247336 

Transcriptional regulation by RUNX2 1,95E-06 0,310832 0,017813 0,026917 0,048463 0,718793 

Cell Cycle 1,08E-07 0,469739 0,009039 0,496917 0,000101 0,872208 

DNA Double-Strand Break Repair 0,033965 0,804147 0,045242 0,674786 0,000309 1 

PTEN Regulation 1,58E-10 0,190683 0,001311 0,179445 0,044848 1 

Cell Cycle Checkpoints 0,00014 0,61761 0,091627 0,520273 6,87E-06 0,996139 

M Phase 0,00011 0,522147 0,649461 0,80767 0,003906 0,914165 

ER-Phagosome pathway 0,005837 0,914248 0,11331 0,533155 0,01061 0,952438 

Metabolism of RNA 5,28E-23 0,232475 0,808288 0,809515 0,015474 0,997186 

NOTCH1 Intracellular Domain Regulates Transcription 0,258518 0,78444 0,000424 0,360141 0,022427 1 

Activated NTRK2 signals through CDK5 1 1 0,163903 0,450414 0,028401 0,700729 

TAK1 activates NFkB by phosphorylation and activation 

of IKKs complex 
0,121503 0,999247 0,067181 0,105702 0,033917 0,998621 
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Table 12 – Annotated pathways in Brain Aging and their level of significance in various 

phenotypes 

 

 

Further investigating the intervened network of similarities across area- or phase-specific 

aspects of aging and pro- or anti-aging alignments of parabiosis, a structured web of overlaps 

could be found (Figure 12). The early wave of aging was characterized with more abundant 

changes in the frontal cortex compared to cerebellum; a discrepancy largely eliminated 

during the second wave. In line with previous findings describing human plasma proteomic 

changes (Lehallier, Gate, Schaum, Nanasi, Eun Lee, et al., 2019), only a minority of factors 

found to be shared across the two waves of aging, implying similar, non-linear alternations 

of the brain transcriptomic landscape. 

 

phenotype /  

Reactome 

Early Aging Late Aging Parabiosis 

FCX CBE FCX CBE Aging Rejuv 

mRNA Splicing 9,37E-09 0,00016 0,884176 0,733447 0,055536 1 

Diseases of signal transduction 0,016199 0,305918 0,009725 0,02808 0,280092 0,603771 

Intracellular signaling by second messengers 6,78E-05 0,318885 2,67E-05 0,000237 0,18672 0,467033 

Toll-like Receptor Cascades 0,031593 0,359231 2,26E-05 0,000112 0,327274 0,265921 

Cell-Cell communication 0,760876 0,901478 0,003286 0,030476 0,741707 0,697839 

CTLA4 inhibitory signaling 0,947923 0,897215 0,000791 0,013573 0,459076 1 

Hemostasis 0,773219 0,488919 0,000259 6,16E-06 0,47967 0,537665 

Innate Immune System 0,546283 0,617656 1,4E-05 3,49E-05 0,805397 0,31436 

p75NTR negatively regulates cell cycle via SC1 1 0,999896 0,022963 0,025734 1 1 

Regulation of insulin secretion 0,894596 0,999926 0,015595 0,007189 0,445943 0,823791 

RUNX2 regulates osteoblast differentiation 0,23639 0,258471 0,002312 0,000203 0,727638 1 

Semaphorin interactions 0,964065 0,848809 1,06E-05 0,000739 0,269694 1 

Signaling by FGFR3 0,062128 0,579173 0,040634 0,022063 0,464291 1 

Signaling by NTRK2 (TRKB) 0,482369 0,999951 0,006223 0,003039 0,161803 0,894002 

Signaling by Receptor Tyrosine Kinases 0,126397 0,579985 1,07E-07 6,45E-07 0,337487 0,198806 

Smooth Muscle Contraction 0,704147 0,642998 0,00216 0,002072 1 0,854852 
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Effects elicited by the exposure to an old circulatory system in young animals were more 

widespread compared to the opposite direction of heterochronic parabiosis, Rejuvenation. 

The changes related to Provoked Aging shown extensive similarities with early aging in the 

frontal cortex, and for the second wave the strong preference towards frontal cortical patterns 

compared to cerebellar ones remained. 

 

Rejuvenation effects were relatively isolated, with 23 out of 29 elements being exclusive to 

that phenotype, including “EGFR downregulation”, “Clathrin-mediated endocytosis” and 

“Terminal pathway of complement”. Two terms, “Metabolism of proteins” and 

“Downregulation of ERBB2 signaling” were shared with the early wave of aging in the 

frontal cortex. “Signaling by Non-Receptor Tyrosine Kinases”, and “Signaling by PTK6”, 

pathways characteristic to the later wave of aging in both investigated brain areas, were found 

to be affected by Rejuvenation. Further similarities with this wave were “Signaling by 

ERBB4” in the frontal cortex and “SHC1 events in ERBB2 signaling” in the cerebellum. 

 

Literature mining results were confirmative. The 271 pathways linked to aging or to 

parabiosis by the Predictome approach (Figure 10) were extensively referenced in previous 

studies on aging or age-related conditions. Co-occurrences with words “Aging” (pWilcoxon = 

6*10-5) and “Age-related” (pWilcoxon = 6.7*10-5) in PubMed abstracts were both significant. 

Central terms picked for annotation (Tables 11 and 12) showed even more substantial 

attunement (pWilcoxon = 10-9 and pWilcoxon = 1.2*10-11), further solidifying coherence of our 

results with a priori knowledge. 
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Figure 12 – overlaps (green) and Jaccard similarities (red) across the Reactome term sets 

associated to investigated phenotypes. For frontal cortex (FCX) and cerebellum (CBE) 

datasets, significant enrichment for both repeated measurements were required. Early and 

later waves of human brain aging were compared with plasma proteomic changes elicited by 

heterochronic parabiosis in old animals (Rejuvenation) and young animals (Provoked 

Aging). Images: Nik Spencer/Nature, (Scudellari, 2015). 
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5. DISCUSSION 

 

5.1. Electrophysiology and Seizure Onset Zone detection 

 

It has been shown previously that the Seizure Onset Zone (SOZ) can be characterized by 

distinct features of the ECoG signal. Analysis of graphs defined using various similarity or 

correlative metrics across signals from selected electrode pairs turned out to be useful tool to 

highlight SOZ. In turn, the feasibility of these approaches indicates alternations of 

epileptogenic foci in terms of generating and reacting to periodic signals both in the 

amplitude and in the phase space. 

 

A previous analysis by the author (File et al., 2020) relied on external stimulation of brain 

tissue hence introduced well-controlled activation to the system. Altered reactivity to 

incoming signals or altered connections spreading local signals can be related to epilepsy 

intuitively. There, we found distinct graph topological changes specific to the SOZ and its 

connections to surrounding tissue in a response to direct electrical cortical stimulation. 

 

Another study (Nánási et al., 2016) involved resting state ECoG recordings. To separate the 

observations from stimulus processing and seizures to an even greater extent, we opted to 

use data obtained during deep non-REM sleep, a technique which has been carried over to 

this thesis. The notable within-subject uniformity of the non-REM stage was expected to 

further enhance the robustness of our results and to emphasize the role of “baseline” 

connectivity patterns in absence of internal or external perturbations, such as sensory stimuli 

or mind state (Pótári et al., 2017; Ujma et al., 2019, 2020). The former analysis relied on 

various feature extraction methods from the ECoG signal while operating in the amplitude 

and phase spaces together, combining the two via previously described and novel heuristic 

metrics. The observed superiority of SOZ detection of approaches integrating multiple 
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subsets of information delivered by processing the ECoG signal emphasizes the complex 

nature of epileptogenic alternations. Among the tested algorithms the best performer turned 

out to be a heuristic method combining slow frequency information with a novel heuristic 

measurement delivered from a multi-band filtering approach. 

 

In this work, our aim was to build on these previous findings and to test whether a more 

sophisticated machine learning approach could extract relevant information on SOZ 

localization using relatively straightforward and local features, such as band power measured 

on individual ECoG channels. Hence, integration steps fusing multi-channel information are 

now performed by the machine learning algorithm itself and not presented intrinsically by 

higher order features, like couplings, which are in turn, somewhat heuristic concepts 

themselves. We expected that an advanced algorithm could retrieve comparable information 

from more primitive features of the ECoG signal. 

 

Data of non-REM sleep was collected for six ECoG patients during the standard diagnostic 

evaluation preceding curative surgery. ECoG recordings of 3-minute length were carefully 

selected to obtain visually uniform recordings of deep sleep. Here, we asked whether it is 

possible to reproduce expert SOZ-selection based on the abundance of various frequency 

band activities and their relationships to each other, in the non-epileptic (resting state) brain 

activity. We have chosen Support Vector Machines as a viable compromise between 

complexity and training data requirements. Also, SVM algorithms can handle problems with 

unbalanced classes and they cope well with outliers – both situations are characteristic to 

electrophysiological readouts. Effects of kernel choice and inclusion of multiband frequency 

information were tested.  Regardless of kernel, delta and gamma frequency bands found to 

be the most important predictors of pathology. However, clinically defined Seizure Onset 

Zones were replicable with great fidelity only when using a Gaussian kernel SVM model 

given access to full spectral information. 
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Epilepsy is linked to brain aging, and brain aging can be manipulated in mouse models by 

heterochronic parabiosis. Furthermore, changes in deep sleep slow wave activity were linked 

to aging using scalp EEG recordings (Pótári et al., 2017; Ujma et al., 2019) and in turn, our 

analysis revealed that the same frequency band contains enough information to reconstruct 

clinically defined Seizure Onset Zones in 4 out of 6 cases from seizure-free deep sleep ECoG 

data. However, as the number of patients with intracranial EEG recordings was insufficient 

to analyze aging, and electrophysiology from parabiosis experiments was unavailable, we 

had to rely on alternative methods to study brain aging. Therefore, we opted to use publicly 

available datasets describing gene expression and protein concentration on a genomic scale 

and proceeded to develop novel bioinformatic tools inspired by the approaches proven to be 

successful in electrophysiology. 

 

5.2. Molecular biology – method development and validation 

 

To study aging in the molecular level, we applied a novel integrative approach to investigate 

transcriptomic changes related to two stages of human neocortical aging. Furthermore, we 

compared our findings with the effects of heterochronic murine parabiosis on the plasma 

proteome. Our method is based on the analysis of the Predictome, which is defined as an 

Interactome (in this case: Protein-Protein Interaction) network weighted according to the 

predictive performance of Support Vector Machine (SVM) models fitted to gene expression 

data or direct plasma protein concentration measurements corresponding to each link. The 

significance of Eigenvector Centrality of elements in this weighted graph was quantified 

using Monte Carlo statistics, summarizing both local and global topological characteristics 

of the resulting network on a node (protein) level. 

 

The key idea of our PPI-Predictome framework is to transform the unweighted protein-

protein interactome network into a weighted graph, where link weights are related to the 

extractable information on phenotype from measurements corresponding to the linked 
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proteins. Then, we can highlight critical items in the Predictome using statistics delivered 

from graph metrics. Graph theory offers an especially well adaptable platform for integrating 

transcriptomic or proteomic readouts with curated protein-protein interaction information. 

As the used facet of a priori knowledge describes the elementary building blocks 

(interactions) of the biological system, it is less biased by constantly evolving conceptual 

categories than higher level representations (like pathways). The Predictome representation 

also helps to deal with genes whose importance could only be assumable in context – “guilt-

by-association” reasoning like this was already proven to be useful when studying the aging 

process (De Magalhães & Toussaint, 2004) or other pathologies, like cancer (Módos et al., 

2017). Additionally, the used Eigenvector Centrality metric incorporates non-local features 

of the graph when quantifying gene importance. 

 

Multiple other approaches are present in the literature to exploit a priori knowledge encoded 

in the Interactome when analyzing high-throughput gene expression. Examples are available 

from various fields, including cardiovascular diseases (Azuaje et al., 2010; Liu et al., 2016; 

Nair et al., 2014), cancer (Y. Guo & Xing, 2016; Nibbe et al., 2010; Y. Yu et al., 2015), and 

immunology (Procaccini et al., 2016). Similarly, application of protein co-expression 

networks have been developed (Gibbs, Baratt, et al., 2013; Gibbs, Gralinski, et al., 2013) and 

applied on proteomic data describing problems related to immunology (C. Guo et al., 2014; 

Wu et al., 2014), neurobiology (MacDonald et al., 2015) and again, cancer (Kanonidis et al., 

2016; X. Yu et al., 2016). These methods are, usually, building functional maps of systems 

corresponding to separate phenotypes by modifying or thresholding the Interactome network 

on the basis of co-expression measurements, then, following this step, they are comparing 

the resulting maps to deduct conclusions regarding to the studied phenotypic changes. The 

Predictome approach is fundamentally different from such techniques as it encodes 

information differentiating the studied phenotypes directly into the constructed model. 

Instead of post-hoc comparisons deliverable from secondary measurements, Predictome links 

are encoding the decisive potential of the connected elements on phenotype explicitly. 
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Aging can be characterized by widespread, but subtle changes of transcriptomic activity. The 

caveat of analyzing such complex and heterogenous data lies mostly in the reliability of the 

results instead of sensitivity: false positive statements could arise from the sheer 

disproportionateness of the variable space (genome-wide) and sample size (typically 10 to 

1000 subjects). The problem is well-known in the literature and no trivial solutions are 

available to negate this obstacle (Bellman, 1957, 1961; Trunk, 1979). Therefore, we opted to 

maximize robustness of our analysis and validated the Predictome approach by employing 

repeated measurements on the experimental level. Top genes identified using the Predictome 

showed enhanced robustness when compared to traditional analysis carried out on individual 

genes. Pathway Analysis demonstrated even more substantial benefits of the novel approach, 

surpassing the single-gene technique both in abundance and in reproducibility of Reactome 

term enrichment results. 

 

Furthermore, outputs of the integrative model were highly coherent with knowledge 

accumulated in the literature. Both on gene and pathway level, items highlighted by the 

Predictome approach were frequently referred together in PubMed abstracts with “Age-

related” alternations or “Aging”. Furthermore, genes enlisted in the GenAge aging database 

were greatly enriched among critical elements of aging Predictomes. 

 

5.3. Molecular biology – brain aging and parabiosis 

 

Brain aging was found to be characterized by numerous robust alternations of transcription 

activity, signal transduction and metabolic integration, well reflecting the literature. Also, we 

observed the strong presence of immune- and vasculature-related pathways together with 

cellular death, senescence, survival and neural development. To our knowledge, the role of 

SCF-KIT, ERBB2, ERBB4 and PTK6 signaling was implicated only indirectly in aging and 

neurodegeneration so far. With the Predictome approach, SCF-KIT Signaling found to be 

significantly altered in the later stage of aging in the frontal cortex and in the cerebellum, 
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ERBB2 and ERBB4 Signaling in both late aging sample and in early neocortical aging, 

whereas PTK6 was associated to late aging in both brain areas as well as to parabiotic 

rejuvenation. NTRK1 signaling (significance of which was found to be more prolific than of 

the already described NTRK2, and which was only connected previously to aging through its 

role in Alzheimer’s Disease) have been highlighted in both stages of neocortical and later 

stage of cerebellar aging. Among Axon guidance related mechanisms, it was novel to see 

Sema4D and EPHA, EPHB to be affected by age (later stage). Analysis of condition-specific 

subgraphs revealed the shared role of Toll-like receptor cascades, Interleukins, VEGF, TGF-

β and various other signal transduction pathways in both aging waves. Previously established 

findings implying the dominance of non-linear changes in the aging plasma proteome 

(Lehallier, Gate, Schaum, Nanasi, Eun Lee, et al., 2019) were found to be valid in case of 

aging brain transcriptomes as well. Despite the presence of shared patterns between the early 

and later aging waves, this intersection only contains the minority of wave-specific pathway 

perturbations. 

 

Importantly, the relevance of parabiotic models to study human brain aging could be verified. 

Young parabionts exposed to old plasma, a phenotype relatable to accelerated aging shared 

multiple aspects with human brain aging. These features included alternations of Cell Cycle 

mechanisms, DNA Repair and SUMOylation. Rejuvenation effect elicited by young plasma 

on old parabionts is known to be more limited which was well reflected by the confined set 

of associable Reactome terms. However, similarities could be found with both stages of 

human brain aging including changes in Metabolism of proteins and ERBB2 signaling (early-

stage) or PTK6 and ERBB4 signaling (late-stage) in a robust manner. Together with recent 

findings on the intervened nature of systemic milieu and brain aging (Pluvinage & Wyss-

Coray, 2020; A. C. Yang et al., 2020), those results confirm the importance of plasma 

measurements and parabiosis to investigate brain aging and related diseases. 
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5.4. Linear and Gaussian kernels in Seizure Onset Zone detection and in 

transcriptomics 

 

Various machine learning approaches are demonstrating strong performance when they are 

tasked to recognize patterns in (biological) data. The choice of Linear SVM for molecular 

data is based on validation results in repeated laboratory measurements and on the need of 

the biological interpretability of model performance. More complex methods often exploiting 

non-linearity, a feature posing a challenge by our relative lack of knowledge on how such 

complicated concentration relationships could govern the biological function of the given 

interaction. In the linear case, accurate predictions can typically arise in two scenarios: when 

the abundance of one or both of the interacting gene products are correlated to phenotype 

(regardless of the directionality of those changes) or in a more intricate way when the ratio 

of the expression levels of the two genes are changing across phenotypes. In the latter 

situation, the synergistic nature of combining data on interacting gene products is explicitly 

required to uncover embedded relations to phenotype. 

 

The synergistic effect was widespread and found to be present in more than 20% of curated 

interactions in the investigated protein-protein interaction network when studying the second 

wave of brain aging. One of the most prominent examples when the Predictome approach 

could unmask otherwise hidden associations to phenotype was the changing ratio of tubulins 

associable with neocortical aging. Although individually not correlated with age, the TUBG1 

/ TUBB4B ratio soundly reflects age group affiliation, with lower relative TUBG1 levels in 

older individuals. TUBG1 is associated with cortical dysplasias and embryonic stem cell 

pluripotency, a protein required for cell cycle progression. TUBB4B is associated with Leber 

congenital amaurosis with early-onset deafness, development (through Slit-Robo signaling) 

and innate immunity. The relatedness of aging to virtually all these processes makes the two 

interacting tubulins relevant to the phenotype, regardless their lack of individual correlations 

to it. 
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Radial basis function (RBF, or Gaussian) kernel transformations are generally favored when 

working with highly complex data. Non-linear relationships and XOR logical disjunctions 

can be solved this way. However, although powerful they are, results achieved by Gaussian 

kernels are sometimes difficult to interpret. Gaussian kernels are capable to find exotic 

separator lines by mapping the measurement points to a higher dimensional space where a 

separating hyperplane can be easily found. Projected back to the (linear) measurement 

coordinates, these planes can form curved, even folding lines which can be a benefit over the 

linear approach and enables the Gaussian kernel to solve XOR-like problems. Consequently, 

regions assigned to a given class in the feature space can be disjunct. This can pose a problem 

in case of highly stochastic data when novel measurement can contain outliers. In the folded 

extra-dimensional space in which the Gaussian kernel operates, those previously uncharted 

regions of the measurement space can be adjacent to unlikely elements (Figure 13). 

 

 

Figure 13 – visualization of Support Vector Machine kernel choice effects on classification 

of Fisher’s classic Iris dataset (Buitinck et al., 2011; Fisher, 1936; Varoquaux et al., 2015). 

Note the disjunct area on the Gaussian example (indicated by arrow). Novel, outlier 

measurement can be classified to the red class, a debatable decision. 
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This kind of kernel behavior can be both advantageous and harmful. In case of ECoG, our 

task was to identify hidden epileptogenic activities. Pathological alternations are expected to 

be somewhat uniform, given the clinical feasibility of expert SOZ detection. On the other 

hand, healthy brain activity is highly complex and diverse across brain regions and 

individuals. Electrode arrays sampled different gyri and even spanned across different lobes 

occasionally. Therefore, the non-SOZ class of observations expected to be non-uniform in 

the measurement space. From the two kernel variants, only Gaussian possesses the ability to 

select a circumscribed zone in the feature space when working with two-class problems 

(Figure 14, panel C). 

 

In contrast, our molecular biology exercises were characterized by the presence of two 

distinct classes of observations. We cannot expect such dramatic differences in feature 

variability when comparing two age groups or the two parabiotic treatment setting. In line 

with those expectations, the linear SVM model outperformed Gaussian kernel SVM when 

working with those molecular datasets (Figure 14, panels B and D). Also, biological 

interpretability of the results was rendered more straightforward using the simpler model: 

strong prediction performance could be the consequence of either altered abundance or 

different concentration ratio of the linked gene products across phenotypes, as discussed 

above. 
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Figure 14 – Variations for feature interactions and the potential of various classification 

approaches to exploit them. A) When one predictor shows clean differences between the 

compared groups, correlation, Student’s t-test, or Wilcoxon rank sum test is sufficient to 

detect the feature with predictive potential on phenotype. B) and D) when predictors are 

changing in a coordinated way as a function of phenotype and the two classes are comparable 

in terms of variability, linear kernel SVM can be a good approximation to extract information 

encoded in feature interactions. In the B) case, the summarized abundance of the two 

predictors gives information on phenotype. In the D) case, the relationship can be described 

as a shift in feature ratio. On the contrary, the situation exemplified on panel D) cannot be 

solved without further transformation of the feature space by RBF of Gaussian kernels. Here, 

in-class variability differs substantially in the original feature space as a more stereotypical, 

less variable phenotype must be highlighted against a non-uniform “background”.  
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6. CONCLUSION 

 

 

In this work, we have investigated the integrated application of machine learning and graph 

techniques in two problems related to brain diseases: aging and epilepsy. Despite using 

different types of input, namely intracranially recorded ECoG signals of deep sleep, post-

mortem brain transcriptomics, and proteomic measurements in blood plasma, the 

combination of techniques proven to be highly synergistic. 

 

In case of ECoG, the author investigated the usability of network-based models (File et al., 

2020) and multi-modal feature integration (Nánási et al., 2016) in Seizure Onset Zone 

localization in previous works. In this thesis, the feasibility of ECoG analysis with Support 

Vector Machines was demonstrated by reconstructing expert SOZ definitions from seizure-

free recordings. 

 

Distinct waves of molecular changes at different stages of life were explored only recently, 

with contributions from the author (Lehallier, Gate, Schaum, Nanasi, Eun Lee, et al., 2019; 

Lehallier, Gate, Schaum, Nanasi, Lee, et al., 2019). In the literature, various pathological 

changes could be linked to aging, including epilepsy. Here, analysis of the transcriptomic 

changes associable to brain aging and their overlap with plasma proteomic alternations 

elicited by heterochronic parabiosis was performed. Inspired by the success of machine 

learning and graph methods in ECoG analysis, a novel framework – the Predictome analysis 

– was conceptualized to integrate literature data with laboratory measurements carried out on 

the phenotype of interest. 
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Predictomes greatly surpassed single-gene analysis in both robustness and interpretability. 

The proposed approach can be used for any kind of omics techniques when the goal is to 

identify differences between groups even in cases where sample sizes are limited, or 

phenotype differences are small. Our results are also pointing out both the possibility and the 

need of development of novel tools considering gene interaction relationships to achieve a 

more reliable and more meaningful analysis of large-scale omics readouts. Furthermore, the 

relevance and usability of heterochronic parabiosis models in studying human brain aging 

was confirmed. 
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7. SUMMARY 

 

In this thesis, we will explore the synergism of machine learning and graph-based techniques 

in analyzing biological data of a wide variety of sources. These tools, separately, have been 

proven to be useful to find patterns of change in large-scale molecular datasets, but their 

combination is more widespread in electrophysiology studies.  

From electrocorticography data recorded in epileptic patients, Support Vector Machine 

models were able to reconstruct expert localization of pathogenic zones. The models relied 

on non-trivial features combining information from multiple frequency bands in a non-linear 

manner and could successfully operate on seizure-free deep sleep recordings devoid of 

obvious epileptiform activity. Inspired by this, feasibility of models combining multiple 

sample features were investigated in transcriptomic and proteomic data from aging 

phenotypes. 

When interpreting transcriptomic data, genes of interest are usually selected based on their 

altered expression and functional gene product relationships are considered only port-hoc on 

the pathway level. Here, we analyzed RNA sequencing readouts corresponding to interacting 

protein pairs using Support Vector Machines to build “Predictomes”, a graph with links 

weighted according to the performance of the models to predict phenotype. Central elements 

of this network showed increased replicability across redundant laboratory measurements 

and, better interpretability when compared to results delivered without integrating protein 

interaction information. Finally, blood plasma proteomic changes of provoked aging and 

rejuvenation in parabiosis were analyzed by the validated model and compared with human 

brain aging. 

Our results underlying both the possibility and the need of development of novel tools 

considering gene interaction relationships to achieve a more reliable and more meaningful 

analysis of large-scale omics readouts. Furthermore, the relevance of parabiosis on the study 

of human brain aging was confirmed, suggesting the prominent role of evolutionally 

conserved, circulating factors in the blood. 
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8. ÖSSZEFOGLALÁS 

 

A dolgozat témája gépi tanulás és gráfelméleti eszközök integratív alkalmazásának 

bemutatása különböző forrásokból származó biológiai adatokon. Bár mindkét megközelítést 

alkalmazzák a molekuláris biológia egyes területein, előnyös tulajdonságaik kombinálása 

mégis inkább az idegtudományokban terjedt el. 

Epilepsziás betegekből származó elektrokortikográfiás adatokból kiindulva gépi tanulásos 

eljárásokkal (Support Vector Machine) sikeresen rekonstruáltuk a patogén zónák szakértői 

lokalizációját. A modellek nem-triviális jellemzőkre, több frekvenciasávból származó 

információk nem-lineáris kombinációira támaszkodtak, és sikeresen alkalmazhatóak voltak 

görcsmentes, mélyalvásban rögzített felvételeken is, jelezve az epileptogén agyterületek 

nyugalmi állapotban is tetten érhető, megváltozott aktivitási mintázatát. Célunk egy hasonló 

elven működő, multimodális szinergizmusra támaszkodó módszer kifejlesztése volt genomi 

léptékű, molekuláris biológiai adatok integratív elemzéséhez. Elektrofiziológiai méréseknél 

a kinyert frekvencia-specifikus adatok triviálisan elektródákhoz, ezek pedig agyterületekhez 

rendelhetők. A molekuláris adatok esetében az együtt vizsgálandó változók csoportosítását 

irodalmi adatok alapján, az egymással funkcionálisan kölcsönható elemek mentén végeztük 

el. Az egyes fehérjepároknak megfelelő transzkripciós adatokra illesztett gépi tanulásos 

modellek teljesítményét vizsgálva így végül egy súlyozott gráfhoz, a „Prediktómhoz” jutunk, 

melynek centrális elemei a vizsgált fenotípusra jellemzők. 

Eljárásunkat az emberi agy öregedését leíró, redundáns transzkriptomikai méréseken 

validáltuk. Az integratív megközelítés reprodukálhatóság és interpretálhatóság tekintetében 

is felülmúlta a funkcionális géntermék-interakciókat nem használó kontroll-modellt. Végül, 

a vérplazma-proteóm parabiotikus változásait hasonlítottuk össze az emberi agyi 

öregedéssel. Eredményeink egyszerre jelzik a funkcionális géntermék-kölcsönhatások 

figyelembevételének lehetőségét és szükségességét genomi léptékű adatok integratív 

elemzésekor. Továbbá, igazolják a parabiózis, mint állatkísérletes modell relevanciáját az 

emberi agy öregedésének tanulmányozásában. 
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