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1. Introduction  

1.1 Subcellular organisation 

The emergence of subcellular organisation was a major milestone during the development 

of life. The eukaryotic cell is divided into several intracellular compartments which 

enables the spatial separation of synchronous biochemical processes [1]. Intracellular 

organisation is a very subtly regulated system maintained in order to conserve 

physiological functions of cells [2]. In fact, the disruption of this homeostatic system is 

often the cause of certain pathologies, where the imperfect localisation of certain 

subcellular actors (mostly proteins) is joined by functional disturbances [3]. These 

“localisation-dependent” pathologies include several kinds of neoplastic diseases [3] 

which cause a significant burden on modern societies [4]. Improved understanding of 

governing forces of subcellular dynamics will open new horizons in the treatment options 

of these diseases [5-9]. 

Subcellular organelles are traditionally defined as compartments of the cells divided by 

membranes, such as the mitochondria, nucleus or the endoplasmic reticulum [10]. These 

subcellular organelles provide their own microenvironment and they enable the 

separation of different subcellular processes [11]. This separation enables that 

intracellular proteins can function at given times with different functions inside different 

organelles [12]. This altered functionality is partly due to the fact, that in different 

organelles the same protein may have very different interacting partners. This change of 

interactors naturally explains the observed functional changes [10].  

The traditional organelles are relatively easy to study and they are known for several 

decades [13, 14].  Lately, subcellular dynamics became a broader topic and a topic of 

utmost importance [15]. This is due to the fact that with the advances of experimental 

procedures we started to understand more and more about these organelles, and about 

how complex their regulation is. An emerging topic is liquid-liquid phase separation [16] 

which is the formation of condensates inside compartments in which the concentration 

gradient of biophysical properties of certain proteins is changed. These condensates 

function as membraneless organelles, and provide a very precise regulation level for the 

cells to organise their processes [17].  
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1.2 Resources to study protein localisation 

Protein localisation could be detected with several methods, here I only list some 

examples, since the detailed discussion of these methods and their characteristics is not a 

focus of this dissertation. Traditional experimental procedures like immunofluorescence, 

immunohistochemistry or immunocytochemistry provide great resolution, precise 

identification of localisation and the amount of proteins is also predictable, but these 

procedures usually require expensive and meticulous protocols thus they are not effective 

in studying large numbers of proteins [15, 18]. 

The other possibility is to utilise predictive algorithms that are able to predict protein 

localisation based on omics traits [19]. These computational methods drastically reduce 

the time of localisation prediction but their predictive power is not yet comparable with 

experimental studies [20]. A logical solution is to combine these different approaches and 

utilise the power of computational tools in the experimental setting as well. The Human 

Protein Atlas (HPA) successfully combines its immunohistochemistry and 

immunofluorescent based data with the help of image analysing software and the result 

is a comprehensive, system-level but experimentally also validated database of human 

protein localisations [21]. 

Beside the HPA database there are other available sources of large-scale protein 

localisation. The UniProt database [22] is probably the database with the highest coverage 

of proteins (565 928 Swiss-Prot entries (manually annotated and reviewed proteins) and 

225 013 025 TrEMBL entries (automatically annotated and not reviewed); accessed on 

25.02.2022), and the Gene Ontology (GO) database is also a frequently used source of 

information. The ComPPI [10] database is a unique option because it not only contains 

localisation data, but these data are also weighted based on the available evidence and 

this provides the opportunity to identify biologically relevant compartment-specific 

interactions.  

1.3 Protein translocation 

Until now I’ve covered the localisation of proteins and the intrinsic structure of cells, but 

this approach was rather static. In living cells there’s not only a high level of structure but 

this structure is constantly changing in response to external stimuli and environment [23]. 
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This constant adaptation of the cells results in subcellular dynamics. One of the prominent 

players in this continuously changing cellular world are the translocating proteins. 

Proteins are sorted inside the cells and they are in a constant movement in order to reach 

their final destination, where they will function and execute their specific tasks [24]. 

Translocating proteins are "restless messengers" inside the cells, they constantly move 

between different organelles and their movement is a major source of information 

propagation. Thus, translocating proteins transfer information from one organelle to 

another and their appearance in certain organelles is able to change the behaviour of the 

whole cell [5, 24, 25]. 

In general, protein translocation is a process which refers to the alteration of a given 

protein’s subcellular localisation. However, this phenomenon has no unified definition, 

and the word ‘translocation’ may also refer to gene translocation or RNA translocation at 

the ribosome. We defined protein translocation as a systems biology phenomenon, which 

refers to the regulated movement of a protein of a given post-translational state between 

subcellular compartments [24]. These subcellular compartments (cytoplasm, extracellular 

space, mitochondria, nucleus, membrane, secretory pathway) were defined following the 

logic of the ComPPI database [10]. This is due to the fact that in order to obtain a 

localisation-specific interactome, usually high-throughput methods are used and the 

widely available solutions offer this resolution as I will detail in the Discussion. 

Protein translocation changes the interaction partners and leads to altered function(s) of 

translocating proteins. There are certain processes (such as co-translational, post-

translational delivery-type, cell division induced, downregulation- or passive diffusion-

related phenomena; discussed in details in Mendik et. al 2019: Supplementary Text S1 

and S2 [24]) that may change the localisation of a protein, but to increase the focus and 

clarity of our work we did not consider them as translocation. Typical examples of 

translocating proteins include transcription factors shuttling between the cytoplasm and 

nucleus, as e.g. p53, NFκB or ERK2/MAPK1 (Figure 1). 

The increasing availability of new spatial proteomics methods [26] will probably soon 

bring a new era in which we could define organelles on a way more precise level. This 

more accurate definition will naturally enhance the understanding of subcellular 

dynamics and will offer even more opportunities. We are aware of this upcoming 
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paradigm shift but during the years of our work this level of information was not yet 

available. When these methods will become general, we assume that the definition of 

translocation may be adjusted even from the systems biological point of view. 

 
Figure 1. Translocation of the ERK2 (MAPK1) protein. ERK2 is a typical example of 

a translocating protein. (a) In the cytoplasm of resting cells ERK2 has kinase activity and 

exerts its functions via phosphorylating receptors, ion channels and other regulatory 

proteins [27]. (b) ERK2 has a nuclear translocation sequence. The translocation is 

initiated by the phosphorylation of Ser 244 and 246 in the kinase insert domain and after 

the subsequent binding to Importin-7 (IPO7) ERK2 is translocated to the nucleus [27]. 

(c) In the nucleus ERK2 regulates gene expression (by phosphorylating a number of 

transcription factors) and as a consequence the cells exhibit reduced anti-tumour activity 

and signs of epithelial-mesenchymal transition [27]. 
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1.4 Epithelial-mesenchymal transition 

Epithelial-mesenchymal transition (EMT) is a biological process which is important 

during early embryonic development, but it may also occur during cancer progression or 

tissue fibrosis. During EMT epithelial cells lose their apical-basal polarity and they 

acquire more stem cell like properties. The resulting phenotype is a mesenchymal like 

cell which is more motile [28]. EMT is not a one-way process: the mesenchymal cells can 

also undergo a mesenchymal-epithelial transition (MET) which is the inverse of EMT. 

These transitions (both EMT and MET) are triggered by cellular signals, e.g. transforming 

growth factor beta (TGF-β) is a potent inducer of EMT [29]. Historically, EMT was 

considered as a bimodal process, where cells either reside in the epithelial or in the 

mesenchymal state, but recently this view has changed. Now EMT is defined as a diverse 

palette of cellular states and cells can be found in any intermediary “hybrid” states 

between the well-defined epithelial and mesenchymal end states [30]. When we are 

defining EMT we must also take it into consideration that there is no dedicated marker of 

EMT (e.g. the loss of E-cadherin in itself), but one must always assess EMT from a 

complex approach and simultaneously interpret functional, morphological and 

transcriptional changes [30]. Prior computational studies of EMT often failed to capture 

this diverse aspect of EMT. 

During the course of EMT a number of proteins gets activated and there are complex 

underlying regulatory processes [31]. Translocating proteins play an important role in this 

process, e.g. the translocation of β-catenin from the plasma membrane to the nucleus is 

an important regulatory step in the process [32]. Although we knew some translocating 

proteins that are important in the regulation of EMT, there were no studies that 

approached this process from the aspect of protein translocations as regulatory elements 

of EMT. 

1.5 Computational network models of the EMT 

The network representation of intracellular pathways is a standard and effective 

evaluation method for intracellular signalling processes [33-35]. These networks consist 

of nodes and edges. The nodes represent proteins and the edges between them stand for 

the interactions of proteins. In a signed network positive and negative edges represent the 

functional effect (i.e. activation or inhibition) of a certain interaction. These networks 
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give us insight into the entire analysed system and not only about certain actors of a 

process. 

Boolean models are similar to signed networks, but in this case each node also has a state 

variable [36]. This variable represents the active (referred to as TRUE, ON or 1) or 

inactive (referred to as FALSE, OFF or 0) state of a certain node. The state of a node is 

determined through Boolean equations where we use logical operators AND, OR and 

NOT. Computational programs are able to solve these equations very effectively [37], 

thus if we create Boolean rules that represent biological relationships we will be able to 

compute the state variable of a given system (Figure 2). 

Figure 2. Boolean models in general. This is an example network demonstrating the 

basic Boolean operations. This model consists of 4 nodes and two of them are active (dark 

blue background) while two other nodes are inactive (light blue background). The state 

of each node is defined by the Boolean rules using the Boolean operators AND, OR and 

NOT. In the marked state each node’s state is in accordance with its Boolean rule, so the 

system won’t change (this is a stable state). 

 

The use of Boolean networks became eminent because these are suited for mapping 

biological observations and hypotheses into a mathematical formalism which can then be 

computationally analysed [38]. The base concepts of Boolean modelling are 

understandable even without a background in quantitative sciences, but the combination 

of these concepts are suited to describe vastly complex biological scenarios. Thus 
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Boolean models are applicable to model biological processes. Furthermore, their 

computational needs are fairly low. 

In order to enable the use of this Boolean approach for life scientists there are available 

software which can be used to build biological models. An available software is the 

BooleanNet [36] software which we used and updated during our research. This software 

is a Python (programming language) package, making the modelling of Boolean systems 

an available reality. 

Previously Steinway et al. [39] created a Boolean model of the EMT. That model 

contained 70 nodes and 135 edges and properly uncovered the simultaneous activation of 

the sonic hedgehog and WNT pathways during TGF-β mediated EMT. Their model is 

based on experimental data and the in silico model rightly recapitulates experimental 

outcomes. More importantly, through some network reduction steps they have managed 

to significantly reduce the size of their network (from the 70 nodes and 135 edges to 19 

nodes 70 edges) and this enables the analysis of EMT in a computationally affordable but 

still functionally rich manner. In their model Steinway et al. [39] already involved β-

catenin as a translocating protein, but they did not address the role translocating proteins 

play in signalling processes and their underlying compartment-specific functions 

systematically. Although Boolean models are suitable to also assess these questions no 

previous work addressed this topic from a systematic point of view. 

The work of Steinway et al. [39] served as baseline for our EMT related research, thus in 

this work I will usually refer to their simplified network model of 19 nodes and 70 edges 

as the “original EMT model” whereas our own EMT model will be named as a 

“compartmentalised EMT model”. 

Though other computational models of EMT also exist, but these models often focus on 

a very limited number of nodes [40]. The advantage of these small models is that these 

can utilise kinetic and ordinary differential equations (ODE) to describe kinetic properties 

as well, but the computational burden of these models is huge, so larger networks cannot 

be evaluated with such methodology, preventing the execution of systematic studies. In 

conclusion, these ODE models are useful when one focuses on quantitatively describing 

parts of the EMT process or analyse the phase diagram or analyse bistable switches but 
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they cannot be scaled up to conduct system level analyses and to predict complex 

interventions. 
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2. Objectives 

This work can be divided into two complementary parts. During the first part we created 

a database of human translocating proteins, termed the Translocatome and then in the 

second part utilising data in the Translocatome database we implemented a 

compartmentalised in silico Boolean model. 

As it is discussed in the introduction of this thesis, protein translocations are important 

regulatory events that govern the behaviour of cells. Several protein databases exist that 

classify proteins in a given way (e.g. UniProt database [22], MoonProt database [41], 

ComPPI database [10]), but none of the previously established databases focused on 

translocating proteins. Given the seminal role of translocating proteins in cellular 

signalling we aimed to create a database that fills this gap. 

During the compilation of the Translocatome database [24] we wanted to create a 

database of human translocating proteins that extensively collects data on the 

translocation probability of human proteins. Thus we aimed to create a framework which 

enables information collection about translocating proteins, and to incorporate those data 

into a database that can be accessible via the internet and also supports the addition of 

future information. Experimental procedures can characterise protein translocations in a 

very complex way but our aim was to also have an extensive coverage of human proteins. 

So we wanted to utilise a machine learning based prediction tool (XGBoost [42]) which 

is able to classify proteins based on training sets. Overall we aimed to create a database 

of human translocating proteins which is based on a manually curated set of known 

translocating (and non-translocating) proteins, and relying on the predictive power of 

those datasets we wanted to predict the translocation probability of an extensive part of 

the human proteome. 

During the second part we focused on utilising the data available in the Translocatome 

database, to create an in silico compartmentalised Boolean model where we can showcase 

the effect of subcellular dynamics and specifically the role of translocating proteins in 

cellular signalling. The observation of EMT seemed like a straightforward option as the 

EMT was previously analysed via systems biology approaches, so there were some 

previous studies as references to our compartmentalised model. Moreover, EMT is 

generally a well-studied process so in vitro comparisons were also available [31] and the 
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translocation of certain factors of EMT were already proven [32]. We wanted to 

understand the role translocating proteins play in a subcellular process and how the 

compartmentalised functions govern certain cell processes from a dynamic perspective. 

In summary, our aim was to utilise the data of the Translocatome database and predict 

translocating proteins during EMT, then, after validating those translocations create a 

compartmentalised Boolean model where protein functions can be represented in a 

compartment-specific manner. Based on dynamic simulations we wanted to analyse the 

compartment-specific functions of translocating proteins. 
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3. Results 

3.1 Description of the Translocatome database 

We created the Translocatome [24] which is the first database that collects manually 

curated human translocating proteins and stores the predicted translocation probabilities 

of an extensive set of the human proteome. The database contains the manually curated 

translocating proteins’ interacting partners in the localisations involved, translocation 

mechanism (including protein structure details if available), type of experimental 

evidence, affected signalling pathway(s) and pathological properties. The Translocatome 

database is based on a manually curated core dataset containing 213 manually curated 

human translocating proteins (http://translocatome.linkgroup.hu/coredata), which were 

collected via literature research of papers containing experimental evidence of protein 

translocations. Altogether the Translocatome contains 13 066 human proteins. These are 

all the human proteins with at least one available experimentally validated subcellular 

localisation in the ComPPI database (as accessed on 20th July 2018). The application of 

the gradient boosting machine learning tool XGBoost [42] enabled the prediction of 

translocation probabilities. This resulted in 1133 high-confidence translocating proteins, 

but all the 13 066 proteins of the Translocatome were characterized with a translocation 

likelihood, named as Translocation Evidence Score (TES; 

http://translocatome.linkgroup.hu/help/scores). Users can access the whole database 

online (http://translocatome.linkgroup.hu) and through various search and download 

options they can utilise the data according to their goals (Figure 3). 

3.1.1 Content of the Translocatome database 

The core of the Translocatome is an extensively curated set of 213 human translocating 

proteins (http://translocatome.linkgroup.hu/coredata). We aimed to collect detailed and 

experimentally validated information about every entry extracted from peer reviewed 

publications (details discussed in Mendik et al, 2019: Supplementary Text S3 [24]). For 

each protein between the 213 manually curated ones we collected the following data (if 

available): 

  

http://translocatome.linkgroup.hu/coredata
http://translocatome.linkgroup.hu/help/scores
http://translocatome.linkgroup.hu/
http://translocatome.linkgroup.hu/coredata
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Figure 3. Schematic flowchart of the Translocatome database construction process 

highlighting 6 major steps. The main input sources of the Translocatome are manual 

curation of peer reviewed articles (Literature curation) and the ComPPI database  

(http://comppi.linkgroup.hu). During the manual curation process we recorded the source 

of experimental validation, several details of the translocation mechanism, the local 

compartmentalised interactome, as well as the involvement in signalling pathways and 

disease development (1). This extensive manual curation resulted in a set of 213 

translocating and another set of 139 non-translocating human proteins. To incorporate our 

data into a protein-protein interaction (PPI) network we imported the interaction data of 

13 066 human proteins (151 889 interactions) from the ComPPI [10] database (2). The 

Manual Curation Framework (MCF) is a user-friendly interface where the data of the 

Translocatome database is stored. Users can log in (after registration) to modify and 

update its data, which is published after expert cross-check (3). We annotated each protein 

in our database with Gene Ontology [43, 44] functional and topological properties to 

enable a prediction process (4). Based on the predictions of the XGBoost machine 

learning algorithm [42, 45, 46] we classified 13 066 human proteins into three sets: high- 

and low-confidence translocating proteins and non-translocating proteins (5). On the 

http://translocatome.linkgroup.hu website the whole dataset is available for searching and 

downloading purposes freely and without registration. Translocatome can be updated by 

the community-based Manual Curation Framework. Moreover, Translocatome is linked 

to the ComPPI database [10] so in the case of its update Translocatome can be also 

updated (6). 

 

A. name set, gene name and UniProt accession number and link; 

B. PubMed ID(s) and link(s) to peer-reviewed article(s) describing the 

experimental evidence of translocation; 

C. initial and target localisations of the translocating protein; 

http://translocatome.linkgroup.hu/
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D. interacting partners and biological functions (both in the initial and target 

compartments); 

E. translocation mechanism; 

F. detection method used; 

G. protein structural information on translocation mechanism; 

H. disease group, exact disease involved and pathological role; 

I. signalling pathways affected. 

For protein identification we used the terminology of the UniProt database [22], to 

describe localisations and biological processes the Gene Ontology [43, 44] terms and for 

the standardization of signalling pathways the KEGG naming convention [47]. Every 

protein was annotated to one of six major cellular localisations (cytoplasm, extracellular 

space, mitochondria, nucleus, membrane or secretory pathway), following the 

methodology of the ComPPI database [10]. When more precise localisation information 

was available the respective entry was also annotated with a minor localisation. All the 

manually curated translocating proteins are characterized by a Data Complexity Score 

(DCS), which described the amount of data annotated to each protein (details discussed 

in Mendik et al, 2019: Data complexity and translocation evidence scores [24], and also 

here: http://translocatome.linkgroup.hu/help/scores).  

As detailed later, we utilised the XGBoost [42] algorithm to predict translocation 

probabilities of human proteins, and to enable this prediction we needed to rely on a 

training set. To create this training set we excluded 53 of the manually curated 

translocating proteins, as they were shown to translocate only under pathological 

conditions (e.g. during carcinogenesis). So the positive training set used to teach the 

XGBoost algorithm consisted of 160 physiologically translocating proteins. 

Similarly to the positive training set, we needed to compile a manually curated negative 

dataset, so we collected 139 human non-translocating proteins (Mendik et al. 2019: 

Supplementary Table S3 [24]). Finding of these non-translocating entries is difficult as 

scientific publications, highlighting the absence of a trait (i.e.: the lack of translocation) 

are not common. So we had to define some baseline scenarios that we considered to be 

widespread reasons for the absence of protein translocation and we collected non-

translocating proteins based on these considerations. So each protein in the negative 

http://translocatome.linkgroup.hu/help/scores
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training set is classified as a protein (a) with experimentally proved diffuse, multi-

compartmental distribution, (b) with exclusive single-compartment localisation, (c) 

docked to DNA/RNA, (d) embedded in membranes or (e) attached to the cytoskeleton. 

To understand the different datasets in the database please consider the Venn diagram 

shown in Figure 4. 

Figure 4. Structure of the Translocatome database. As shown in the above Venn 

diagram, the database consists of the Core Data of 213 manually curated translocating 

proteins, which are extended by 1133 and 3268 high- and low-confidence translocating 

proteins, respectively. Circles with green and red background represent the positive and 

negative training sets, respectively. The Core Data and positive learning set differ, since 

the latter does not contain the 53 proteins showing translocation exclusively under 

pathological conditions. 

 

In summary, the Translocatome is a database that contains 13 066 human proteins, each 

protein is characterized with a translocation probability and the core of the database is a 

strongly manually curated dataset. The interactome data of these proteins are also 

imported from the ComPPI database adding 151 889 protein-protein interactions. These 
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features make the Translocatome an extensive database of human translocating proteins 

and the data within can be utilised to create future studies that focus on the role of 

translocating proteins and their compartment-specific roles.  

3.2 Predicting protein translocations with the Translocatome database 

As discussed in the previous section, the Translocatome contains a great amount of 

manually curated data regarding translocating proteins. Such data could be utilised to 

conduct a supervised machine learning workflow: data collection, feature extraction, 

feature selection, classification, training, testing and interpretation. We used the well-

established and widely used gradient boosting-type machine learning tool, XGBoost, 

which was already applied in previous studies to predict among others host-pathogen 

protein-protein interactions [48], microRNA disease association [49] or DNA 

methylation [50]. These studies showed that XGBoost gives the best performance if 

compared to other state-of-the-art machine learning methods. The data collection step is 

the manual curation process of translocating proteins (see Mendik et al, 2019: 

Supplementary Text S3 for details [24]) and the other steps are explained below. 

During the training step we annotated each of the 13 066 proteins of the Translocatome 

with their relevant Gene Ontology (GO) terms (cellular component, biological process 

and molecular function terms specifically), including the ancestors of these terms. This 

process followed the methodology used by Kerepesi et al. [46] and is also detailed in 

Mendik et al. 2019: Supplementary Text S5 [24]. As a result a total of 21 020 GO terms 

were annotated to the proteins (see details in Mendik et al, 2019: Supplementary Text S6 

[24] and here: https://github.com/kerepesi/translocatome_ml). Moreover, we annotated 

each protein with the network parameters degree and bridgeness (we used the interactome 

data of 151 889 interactions imported from the ComPPI database). Degree (the number 

of neighbours a protein has) and bridgeness [51] (nodes connecting different modules of 

a network have high bridgeness values) values were significantly higher among manually 

curated translocating proteins than between manually curated non-translocating proteins 

or the average (Figure 5). The underlying biological explanation behind these differences 

is that translocating proteins often play a central role in cellular regulation thus they have 

a lot of neighbours, or in network terms they act as hubs [52]. On the other hand, in light 

of the fact that translocating proteins can mean the “bridge” between distinct cellular 

https://github.com/kerepesi/translocatome_ml
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organelles (e.g. nucleus and cytoplasm) it is not surprising that their bridgeness values 

are also significantly higher. GO terms, degree and bridgeness were selected by the 

XGBoost tool as feature sets. 

Since the ComPPI database [10], from which we imported the protein-protein interaction 

data, does not contain interactions occurring under pathological conditions, we were 

prompted to exclude those 53 manually curated translocating proteins from the positive 

training set which translocated only under pathological conditions. The remaining 160 

manually curated translocating proteins were used as a positive training set. 

Figure 5. Degree and bridgeness 

of all proteins, positive and 

negative training sets. The mean 

± standard deviation (SD) of the 

degree (panel a) and the 

bridgeness (panel b) values of all 

the 13 066 proteins as well as the 

160 and 139 proteins of the 

positive and negative training sets. 

Degree and bridgeness values 

were calculated based on the 

ComPPI-derived human 

interactome having 151 889 

interactions. (A) The average 

degree is 23.2, 37.9 and 124.1 for 

all proteins, the negative and the 

positive training sets, respectively. 

The average degree of the positive 

set is significantly higher than that 

of the other two sets (p<0.05, 

Student's two tailed t-test). (B) 

The average bridgeness is 0.04, 

0.03 and 0.13 for all proteins, the 

negative and positive training sets, 

respectively. The average 

bridgeness of the positive set is 

significantly higher than that of 

the other two sets (p<0.05, 

Student's two-tailed t-test). 

 

Similarly to previous studies we evaluated the XGBoost-selected feature sets by 5-fold 

cross-validation, and the predictive power by the area under the curve of the receiver 

operating characteristic curve (ROC AUC or shortly AUC). 5-fold cross-validation is a 
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method where the training data is split into five random parts. While one part is used for 

evaluation of the predictions, the other four parts are used to train the XGBoost machine 

learning tool. For every feature set, we repeated this cross-validation process 100 times. 

The XGBoost program characterized each feature used during the training part with an 

importance value. We relied only on the most important features, having an importance 

value greater than 0.02. The 15 GO features (from the initial 21 020) most suitable for the 

algorithm produced an average AUC of 0.916 (± 0.0046 standard deviation). To these 15 

features we added the two interactome-derived features degree and bridgeness and this 

resulted in a final high performing model with the average AUC of 0.9207 (± 0.0056 

standard deviation), which is even higher than an average AUC of 0.916 of the GO term 

based model. The ROC curves of 100 five-fold cross-validation runs of this final model 

showed a minimal, average and maximal AUC of 0.9047, 0.9207 and 0.9333, respectively 

(Figure 6). 

Figure 6. Performance of the XGBoost machine learning method on the final feature 

set. Each of the 100 different receiver operating characteristic (ROC) curves belong to a 

different 5 fold cross-validation run on the training set (containing 160 physiologically 

translocating and 139 non-translocating proteins). These ROC curves were plotted using 

the final feature set (see Table 1) selected earlier as described. The minimal, maximal and 

average area under the curve (AUC) were 0.9047, 0.9333 and 0.9207 (±0.0061 standard 

deviation), respectively.
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Gene Ontology process (GO term 

name) or interactome feature 

Importance Short biological explanation 

Parameters having a positive predictive value 

animal organ morphogenesis 

(GO:0009887) 

2.68 Morphogenesis and other developmental processes are mostly regulated through 

complex networks of transcription factors, where translocation is often involved 

as a regulation step [53]. 

regulation of carbohydrate 

metabolic process (GO:0006109) 

1.53 A lot of metabolic enzymes also function as protein kinases and translocate 

between cellular compartments playing a role e.g. in carcinogenesis [54]. 

cytoplasm (GO:0005737) 1.35 Large cellular compartments are often associated with proteins that translocate. 

Nucleo-cytoplasmic translocations play a key role in the regulation of 

transcription factors [53]. 
nuclear part (GO:0044428) 1.12 

negative regulation of cellular 

process (GO:0048523) 

1.12 Negative regulatory mechanisms are frequently exerted by translocating proteins 

such as PTEN [55] or transcription factors. 

plasma membrane part 

(GO:0044459) 

0.70 Large cellular compartments are often associated with proteins that translocate. 

Cytosol-membrane translocations play a key role in the regulation of signalling 

pathways [56]. extracellular region (GO:0005576) 0.65 

cytosol (GO:0005829) 0.57 

spliceosomal complex 

(GO:0005681) 

0.23 The spliceosome is composed of snRNPs translocating from the cytoplasm. 

Some spliceosome components are also involved in mRNA export [57, 58]. 

Parameters having a negative predictive value 

bridgeness value is lower than 

0.000292 (bridgeness lower than 

0.000292) 

-0.36 Translocating proteins often bridge the two interactome modules (large protein 

complexes) of their two localisations. Therefore, their bridgeness values tend to 

be high ([59] and Mendik et al. 2019: Supplementary Figure S1 [24]). 

degree is smaller than 62.5 (degree 

lower than 62.5) 

-0.50 A reasonably high number of interaction partners often indicates a role in 

regulation and signal transduction. Many of these proteins are "date-hubs", 

which may undergo a translocation process. Nevertheless, too many partners 

could be a characteristics of a multi-compartmental housekeeping protein ([60] 

and Mendik et al. 2019: Supplementary Figure S1 [24]). degree is smaller than 14.5 (degree 

lower than 14.5) 

-0.54 

negative regulation of intracellular 

signal transduction (GO:1902532) 

-0.61 If the translocation process becomes inhibited, it may often prevent signal 

transduction. Inhibition often occurs via sequestration by large protein 

complexes which usually have only one localisation [61]. 

myeloid cell differentiation 

(GO:0030099) 

-0.74 Cell adhesion and membrane bound proteins play an important role in myleoid 

cell differentiation [62, 63]. Both protein categories are typically non-

translocating proteins, which may over-compensate the role of translocating 

transcription factors in this process. 

intrinsic component of membrane 

(GO:0031224) 

-0.82 Intrinsic membrane components predominantly do not translocate to other major 

localisations. 

system process (GO:0003008) -0.91 A wide variety of proteins exert their system level biological functions (e.g. 

secretion of molecules) in a non-translocating manner: cell membrane channels, 

actin, myosin, etc. 

single organismal cell-cell adhesion 

(GO:0016337) 

-1.06 Cell adhesion proteins usually have a strictly limited location in the plasma 

membrane 

bridgeness value is lower than 2.5e-

06 (bridgness lower than 2.5e-06) 

-1.10 Translocating proteins often bridge the two interactome modules (large protein 

complexes) of their two localisations. Therefore, their bridgeness values tend to 

be high ([59] and Mendik et al. 2019: Supplementary Figure S1 [24]). 

protein complex (GO:0043234) -1.24 Proteins often fulfil their roles in large protein mega-complexes. These 

complexes may assist other proteins to translocate, but their own components do 

not translocate. 
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Table 1. The feature set identified as best predictor by the XGBoost machine 

learning algorithm. Features selected by the XGBoost machine learning algorithm can 

be either interactome related network metrics or GO term-related functional parameters 

(first column). XGBoost assigns an importance score to each feature (as shown in the 

second column. Calculation detailed in Mendik et al, 2019: Supplementary Text S6 [24]). 

In the third column there is a general explanation as to why these features are biologically 

valid choices by the XGBoost machine learning algorithm. 

 

Furthermore, both the precision-recall and Matthews correlation coefficient curves were 

evaluated and those further strengthened the high performance of our predictive model 

(details in Mendik et al, 2019: Supplementary Figure S3 [24]). All the data and 

computational codes needed to reproduce this methodology are available at 

https://github.com/kerepesi/translocatome_ml. The feature set of the final model is shown 

in Table 1. Features with positive importance values increase the probability of 

translocation, and the underlying logic is also explained in the table. On the contrary, 

features with a negative importance value decrease the probability of protein 

translocation. Using these features we calculated the translocation probability of each 

protein in the Translocatome. 

Translocation probabilities were calculated with the help of the XGBoost program. The 

program takes into consideration the features characteristic of a certain protein and then 

based on the importance value of those features we calculated a Translocation Evidence 

Score (TES) which corresponds to the translocation probability of a given protein. The 

TES values follow a continuous distribution so we determined some cut-off values to 

translate those numerical values into biologically relevant categories. To define these cut-

off values we used the F1-score (measures the performance of a binary classification 

being a harmonic average of precision and recall) which reached its peak at the TES value 

of 0.4487, so proteins with a smaller TES value were considered as non-translocating 

proteins (8665 proteins). Then we defined another threshold value at 0.6167, because no 

proteins in our negative training set had higher TES values than that, so we can propose 

that the proportion of false positive predictions in this subgroup is very low. So we named 

these proteins – with the highest TES values – high-confidence translocating proteins 

(1133 proteins). The proteins with TES values between 0.4487 and 0.6167 were 

considered as low-confidence translocating proteins (3268 proteins). 

https://github.com/kerepesi/translocatome_ml
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The Translocatome is the only established database of human translocating proteins and 

the extensive coverage of it enables further systems level analyses. To demonstrate the 

value and reliability of the predictions we assessed the top 40 proteins with the highest 

TES values. These proteins fall into four categories: 

A. were already included in the manually curated 213 translocating protein set (12 

proteins: PTEN, PTK2, FOXO3, GMNN, ATF2, MAPK1, GLI3, HRAS, AR, 

SMAD3, SMAD2 and HSP90AB1); 

B. were previously shown to be translocating proteins but have not appeared in our 

Core Data of 213 proteins collected from keyword based searches (11 proteins: 

NF2, TULP3, SNCA, FGFR2, MTOR, GSK3B, EIF6, HDAC1, CARM1, CUL1 

and RARB); 

C. have not been described as translocating proteins yet, but from the literature we 

can conclude that their translocation is probable (one protein: TP63); 

D. there is no information in the literature about their translocation (one protein: 

PRKRA). 

Proteins in categories C and D are the most interesting ones, as novel discoveries may 

reside here. We highlighted this through the example of the p63 protein (Tumor protein 

63), which physiologically resides in the nucleus of human cells [64], and it was not 

marked as a translocating protein in available databases. p63 is a transcription factor [64] 

and it plays an important role in the regulation of embryogenesis [65]. Beside this 

physiological functions p63 also appears in the cytoplasm of adenocarcinoma or prostate 

carcinoma cells, and this cytoplasmic localisation results in increased malignancy of these 

tumours [25, 66]. The XGBoost algorithm’s prediction to signal p63 as a translocating 

protein thus could be understood and similar results should be verified and their 

regulational interactors should be better understood. 

Altogether we’ve shown that the XGBoost machine learning algorithm is able to learn 

the features of translocating proteins from a wide feature set, and based on the identified 

discriminatory features the algorithm predicts further proteins’ translocation probabilities 

with high efficiency. The result is an extensive database of human translocating proteins 

with a manually curated core dataset. The validation of the predicted translocations could 

shed light on important new regulatory roles of translocating proteins. 
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3.3 Enrichment of translocating proteins among 

signalling proteins 

As detailed above in the first phase of my PhD studies we created an extensive database 

of human translocating proteins. During the second phase we focused on utilising this 

dataset and to prove the impact of protein translocations and in general compartment-

specific subcellular dynamics on cellular behaviour. 

The EMT is a biological process in which the role of protein translocations was already 

proven [32], but until our research no studies focused specifically on the regulatory role 

of network compartmentalisation. To see if EMT is a process where the observation of 

protein translocations is indeed possible first we proved that translocating proteins are 

enriched between human signalling and specifically EMT proteins. In the Translocatome 

66% of the proteins are non-translocating proteins, with 25% low confidence and 9% 

high-confidence translocating proteins. Using GO terms we defined the set of general 

signalling proteins and EMT proteins, and observed if the same distribution of 

translocating proteins is true. 

Among human signalling proteins we found that altogether a higher percentage of 

proteins are predicted as translocating (31% are low-confidence and 15% are high-

confidence translocating proteins). Simultaneously, the percentage of non-translocating 

proteins (54%) is smaller. Similarly (but to an even greater extent), in the case of EMT 

proteins we found that 39% of the proteins are low-confidence translocating proteins and 

33% are high-confidence translocating proteins whereas only 28% of the proteins are non-

translocating proteins, based on the TES values of the Translocatome database (Figure 

7). This observed distribution of translocating proteins is significantly (p < 0.0001, Chi-

square test) different to what we observed between all proteins of the Translocatome. This 

underlines that translocating proteins in fact could have an important role in the regulation 

of certain signalling processes and EMT is a suitable model to observe those 

compartment-specific features. 



26 
 

Figure 7. Translocating proteins are enriched among signalling and EMT proteins. 
The figure shows the distribution of proteins according to their translocation probability 

in different datasets (Translocatome proteins, signalling proteins and EMT proteins, see 

Mendik et al, 2022: Methods for the definition of these datasets [67]). The rate of high-

confidence translocating proteins between the Signalling (15%) and EMT (33%) proteins 

is significantly higher than between the Translocatome proteins (9%). The same 

significant difference is true for low-confidence translocating proteins as well. The 

percentage of low-confidence translocating proteins is higher between Signalling (31%) 

and EMT proteins (39%) than between Translocatome proteins (25%). On the contrary, 

in the case of non-translocating proteins there is a significantly lower percentage of non-

translocating proteins among signalling (54%) and EMT (28%) proteins than among 

Translocatome proteins (66%). (Further details of this analysis are discussed in Mendik 

et al, 2022: Methods [67]) ****: p < 0.0001, Chi-square test. 
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3.4 Compartmentalised Boolean model of the epithelial-

mesenchymal transition 

After demonstrating the overrepresentation of translocating proteins in EMT we focused 

on creating a compartmentalised network model of EMT, where the role of protein 

translocations can be assessed from a network biology perspective. In the 

compartmentalised network each protein is represented according to its subcellular 

localisation. If a protein can translocate between 2 subcellular localisations, then it is 

divided into 2 nodes and each node has only the interacting partners in that specific 

location (Figure 8). This process is the compartmentalisation of a network and it results 

in an end state where each protein’s regulation will be represented according to its 

subcellular localisation as well. We always aimed to create Boolean rules which capture 

the experimentally validated biological functions, and for this study our primary aim was 

not to create a generalizable compartmentalisation process but to prove the additional 

value of compartment-specific interactions and thus regulatory relationships. 

Compartmentalisation is crucial because proteins can have utterly different functions in 

different subcellular organelles, e.g. in the case of translocating proteins. 

To prove the additional value of compartmentalisation (our model), we used a 19-node 

EMT model published by Steinway et al. [39] as a benchmark and we compared our 

model to it. As mentioned in the introduction of this thesis I refer to their 19-node model 

as the “original EMT model”. 

The original EMT model had 19 nodes and 70 edges. Based on the data of the 

Translocatome 14 nodes out of the 19 were predicted as high-confidence translocating 

proteins in accordance with the previous GO based enrichment analysis and again 

underlying the importance of protein translocations in EMT. Based on a thorough manual 

curation process (detailed in Mendik et al, 2022: Methods [67]) we validated these 

translocations and included them in the compartmentalised model only if we could both 

validate the translocation itself and the fact that it is involved in EMT as well. 
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Figure 8. Creation of compartmentalised Boolean rules. In conventional network 

representation of signalling processes nodes represent proteins and edges are interactions 

between them (inhibitory or activatory), but their localisation specificity is not 

considered. In our compartmentalised Boolean model, we can systematically add this 

information, so the compartment-specific functions of proteins can be investigated. This 

figure shows a hypothetical explanatory example, where we highlighted a “translocating 

protein” with green. (a) One possibility is that after e.g. phosphorylation by B the protein 

translocates to the nucleus and this does not directly affect the cytoplasmic pool of that 

protein. (b) Another possibility was already contained in the original EMT model (in the 

case of β-catenin), where the nodes mutually inhibit each other. (c) Some transcription 

factors can upregulate their own expression which can act as a positive feedback, (d) but 

it is also possible that both the cytoplasmic and the nuclear pools of a protein have their 

own regulatory interactions but they don’t affect each other directly. There are also other 

potential combinatorial possibilities discussed in details in Mendik et al, 2022: 

Supplementary Figure 7 [67]. 

 

 

Compartmentalised Boolean rules were created based on available literature data; 64 

publications were reviewed for the 10 compartmentalised nodes and thus by node-

duplications we extended the 19-node network into a 30-node network (the NOTCH node 

was divided into 3 subcellular nodes, since it has validated localisation and activity in the 
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plasma membrane, in the cytosol and in the nucleus as well). This resulted in a 

compartmentalised Boolean model which was ready for further dynamic network analysis 

and to inspect the additional value provided by compartmentalisation and to validate it by 

comparing it to the available experimental results. The final model is defined in Mendik 

et al. 2022, Supplementary Data 3 [67] (I will refer to the node names as defined there). 

Our work can be summarized as a workflow, where first the predicted translocations are 

identified (via the Translocatome database), then these are manually (or experimentally) 

validated and finally, compartmentalised Boolean rules are created. Computational 

analyses can be performed on this compartmentalised model and different outputs can be 

evaluated. We also created an online application (https://translocaboole.linkgroup.hu) 

where our model can be tailored to specific interests (Figure 9). The web application 

provides the opportunity to edit compartmentalised Boolean rules and to rerun 

computational analysis (the simulation runs with the default settings of 25 iterations and 

20 000 steps, every node is perturbed). The server behind the webpage automatically 

reruns the simulations and users can download the final output files. Users who need more 

features and modifications can also opt to download the input files (from the webpage) 

and with those files they can use the relevant codes available in our GitHub repository 

(https://github.com/deriteidavid/compartmentalized_EMT_Boolean_model_Mendik_et_

al_2021) to rerun the analyses. The website and GitHub tools make it possible to also use 

our workflow as a framework for similar future studies. 

Our compartmentalised model is a discrete dynamic Boolean model that characterizes 

every node by a state variable (ON or OFF), corresponding to the node’s activity and a 

Boolean function which describes the nodes’ regulation. During a dynamic simulation an 

asynchronous updating algorithm randomly selects a node and updates its state according 

to its Boolean rules (more details in our respective publication). Boolean models of 

biological systems converge into stable states, called attractors, which qualitatively 

correspond to real biological phenotypes [38, 68]. To understand the biological validity 

of a Boolean model we can evaluate its attractors from a biological viewpoint. 

https://translocaboole.linkgroup.hu/
https://github.com/deriteidavid/compartmentalized_EMT_Boolean_model_Mendik_et_al_2021
https://github.com/deriteidavid/compartmentalized_EMT_Boolean_model_Mendik_et_al_2021
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Figure 9. Workflow for the creation and evaluation of a compartmentalised Boolean 

model. Based on previously published Boolean models of the EMT and utilising the data 

available in the Translocatome it is possible to uncover translocating nodes that need to 

be compartmentalised. The compartmentalised model (with updated Boolean functions) 

was created through careful revision of available literature by manual curation. Dynamic 

simulation could be run on the model and the results could be analysed as different outputs 

on different levels, such as node or pathway activities or the identification of stable 

attractors of a system. Stable motifs and control sets of a model could be identified with 

additional analyses or attractor stability measurements could be executed. Users could 

modify our model, automatically rerun simulations with our standard settings (25 

iterations and 20 000 steps, every node is perturbed) and download the results on the 

website: https://translocaboole.linkgroup.hu/ 

 

Our compartmentalised EMT model has seven attractors, the most important ones are the 

epithelial (E) and mesenchymal (M) attractors (Figure 10a). The attractors and stable 

motifs of our model were analysed using a state-of-the-art method [69] (see details in 

Mendik et al. 2022: Results [67]). The E and M attractors are polar opposite states, 

differing in every node, with the exception of SOS_GRB2. The remaining 5 attractors are 

intermediary states, which can be translated to hybrid states of the EMT which emerge 

during incomplete or partial EMT processes. Our model also successfully recapitulated 

the experimental findings used to validate the original EMT model (Table 2). 

https://translocaboole.linkgroup.hu/
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Table 2. Experimental outcomes reproduced by the compartmentalised and the 

original EMT model. The publication of Steinway et al. used the experimental results 

detailed in this table to prove the validity of their model. To ensure our compartmentalised 

model performs similarly we observed the same experimental results and concluded that 

it reproduces all experimental results as expected. 

 

The analysis of the control sets of our model revealed that forcing the network into the 

epithelial state is more feasible (requires less complex interventions) if we also rely on 

compartment-specific perturbations. A control set of an attractor is a given group of 

nodes, which, when forced to the corresponding state, drive the whole system into a 

specific attractor. In the compartmentalised model the simplest control set of the epithelial 

state was a smaller set of nodes (5 nodes) than in the original EMT model (6 nodes). The 

simplest control set of our model contains compartmentalised nodes, so we could 

conclude that the perturbation of compartment-specific functions led to a simplification 

Experimental result Reference  

Recapitulated 

by the 

original EMT 

model 

Recapitulated by the 

compartmentalised 

model 

TGFβ signalling leads to SMAD 

complex formation, MAP kinase 

signalling, and AKT signalling. 

[70] yes yes 

Wnt signalling leads to nuclear 

localisation of β-catenin, AXIN2 

induction, and suppression of the 

destruction complex 

[71] yes yes 

SHH signalling leads to induction of GLI 

transcription factors 
[72] yes yes 

miR200 inhibits TGFβ–driven EMT [73] yes yes 

E-cadherin suppressing transcription 

factors SNAI1, SNAI2, ZEB1, ZEB2 and 

TWIST1 induce EMT when acting 

together 

[74, 75] yes yes 

Constitutive SNAI1 or TWIST1 

activation drives EMT 
[74-77] yes yes 
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in the control of the system (corresponding data shown in Mendik et al. 2022: 

Supplementary Data 4 [67]). 

We’ve also shown that in the presence of noise our model shows a somewhat improved 

stability profile where the stability of the epithelial attractor is improved (compared to the 

original EMT model), but still the system overwhelmingly favours the mesenchymal state 

(details in Mendik et al. 2022: Supplementary Note 2 and Supplementary Table 3 [67]). 

To compare the two models head-to-head we used two simulation setups: 

A. single node perturbations, where only one node’s state was perturbed in the 

epithelial initial state. In this scenario TGFBR node was OFF, so we refer to these 

simulations as TGFBR OFF simulations. 

B. in the second setup we also introduced single perturbations, but additionally 

already in the initial state we set the value of the TGFBR node permanently ON 

(TGFBR ON simulations), mimicking the biological scenario of active TGF-β 

signalling. In this setup we could inspect which nodes’ perturbation could inhibit 

the TGF-β driven EMT. 

These simulation setups were similar to wet-lab knock-out (KO) and knock-in (KI) 

experiments, but due to the compartmentalised nodes we were able to introduce 

compartment-specific perturbations. 

We found differences between our and the original model in two cases: either NOTCH 

or MEK KI led to EMT in the original but not in the compartmentalised model. 

Experimental results suggest that Neurogenic locus notch homolog protein 1 (NOTCH) 

activation alone without the induction of TGFB was not sufficient to induce EMT [78, 

79] so our model coincided better with these results. This improved behaviour stemmed 

from the fact that in our model we were able to better capture the regulatory events needed 

to activate the Zinc finger protein SNAI1 (SNAI1). 

The results regarding MEK activation are more complex as experimental results verify 

both outcomes. Depending on the context MEK activation in itself is either satisfactory 

to induce EMT or not [80, 81], but it was important to note that in the case of TGFBR 

ON simulations only the compartmentalised model showed correctly that MEK inhibition 

could prevent TGFB induced EMT [82]. Further experimental results could shed light on 
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more complex regulatory interactions and adding those to the model could clarify this 

ambiguous picture. 

3.5 Compartment-specific functions of translocating 

proteins 

Our new modelling approach also enabled the assessment of compartment-specific 

functions. During TGFBR OFF simulations GSK3B KO in the original model and 

GSK3B_cyto KO in the compartmentalised model both led to the mesenchymal 

phenotype. Experimental evidence confirms these outcomes as the inhibition of 

cytoplasmic GSK3B by LiCl led to EMT in ovarian adenocarcinoma [83]. But the 

compartmentalised model also uncovered that GSK3B_nuc KO did not lead to EMT, 

because GSK3B mainly localises to the cytoplasm and only translocates to the nucleus 

during EMT [83-85], thus it is expected that in the epithelial state the KO of GSK3B_nuc 

does not have an effect (Figure 10b). 

Another compartment-specific result with GSK3B is that in the case of TGFBR ON 

simulations GSK3B were able to repress EMT, and this inhibitory effect is stronger in the 

nucleus (Figure 10c). Experimental results proved that the inhibition of the PI3K/AKT 

pathway suppressed EMT through the induction of GSK3B in hepatocellular carcinoma 

(HCC) [85]. The more robust inhibition in the nucleus is a consequence of the fact, that 

nuclear translocation of GSK3B prevents EMT through the downregulation of SNAIL 

transcription factor and that nuclear GSK3B is highly active relative to its cytoplasmic 

counterpart [86]. 

Beside GSK3B we also detected some compartment-specific functions of the GLI node. 

GLI KI in the original model and GLI_nuc KI in the compartmentalised model both led 

to EMT, which is expected as independent GLI activation can induce EMT [87]. Although 

in the compartmentalised model the KI of GLI_cyto did not result in EMT (Figure 10d), 

because in the absence of an upstream signal cytoplasmic GLI2 gets truncated into a 

transcriptional repressor form which inhibits GLI-induced gene transcription [88] and 

there is a simultaneous cytoplasmic sequestration of GLI1 [89].  
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Figure 10. Attractors of the compartmentalised model showing localisation-specific 

functions of GSK3B and GLI. (a) The attractors corresponding to the epithelial (on the 

left) and mesenchymal (on the right) state. Perturbations were introduced to the initial 

epithelial state. (b) During TGFBR OFF simulations the cytoplasmic KO of GSK3B 

resulted in EMT, while the nuclear perturbation had no effect. The signal from 

GSK3B_cyto KO propagated through the loss of the Dest_compl and the activation of 

AKT and MEK. (c) TGFBR ON simulations showed that both the KI of the cytoplasmic 

and nuclear node of GSK3B inhibited the TGFB mediated EMT. The nuclear perturbation 

had a greater inhibitory effect by preventing the loss of miR200 and consequently the 

activation of ZEB1 and ZEB2. The nuclear perturbation also led to the inhibition of 

SNAI2_nuc and Bcatenin_nuc, despite the loss of the Dest_compl and the activation of 

SNAI2_cyto compared to the cytoplasmic perturbation. GSK3B_cyto functions both to 

stabilize the epithelial state and to inhibit TGFB mediated EMT, whereas GSK3B_nuc 

functions specifically to inhibit TGFB mediated EMT. (d) TGFBR OFF simulations show 

that the nuclear perturbation of GLI led to EMT, while the cytoplasmic perturbation alone 

was insufficient to destabilize the epithelial state. GLI proteins exert their main function 

in the nucleus and if sequestered in the cytoplasm, GLI2 gets truncated into a repressor 

form that further decreases transcriptional activity. The compartmentalised model 

reproduced these localisation-specific functions. 

3.6 Analysing signalling pathway activities via network 

models 

We also assessed the activities of signalling pathways that play a pivotal role in EMT. 

Based on a previous review [31] the most important pathways in EMT are: 

A. TGF-β SMAD-dependent signalling 

B. TGF-β SMAD-independent signalling 

C. receptor tyrosine kinase (RTK) signalling 

D. Wnt signalling 

E. NOTCH signalling 

F. Hedgehog signalling  

G. Hypoxia signalling 

This analysis recapitulated previous results of Steinway et al. [39] that Wnt and Hedgehog 

pathways are jointly activated during EMT but we also captured other synergistic 

functions of signalling pathways [39, 90]. As a validation of known crosstalk between 

TGF-β and Hedgehog signalling pathways [91, 92], the activation of SMAD proteins 

resulted in a quicker activation of the Hedgehog signalling pathway in our 

compartmentalised model. Similarly, TGF-β and Notch signalling also synergistically 

work together [93, 94] and that was also demonstrated with our signalling readout, as 
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again the activation of SMAD proteins led to subsequent activation of the NOTCH 

pathway (Figure 11). 

Figure 11. Signalling pathway activities during EMT. (a) This panel shows the activity 

of the main signalling pathways during EMT. There are 11 single node perturbations that 

led to EMT, here we show the average of the pathway activities that can be observed 

during these 11 perturbations. There was a difference in the kinetics of the activation of 

different pathways. Importantly, TGFB activation is still accompanied by the activation 

of the Hedgehog and Wnt pathways as captured by the original EMT model. (b) The 

activation of the Hedgehog signalling pathway for different perturbations. Each line 

symbolizes one specific perturbation which led to EMT and thus the activation of the 

Hedgehog pathway. We note here that the perturbation of the TGFB pathway member 

SMAD proteins (yellow and green) resulted in a quicker and more robust activation of 

the Hedgehog pathway. The most robust activation could be observed when we activated 

the nuclear pool of GLI proteins, with the perturbation of the GLI_nuc node (brown). (c) 

The activation of the Notch signalling pathway during different perturbations. The 

activation of SMAD proteins (green and yellow) resulted in a quick and robust activation 

of the Notch pathway which underlines the crosstalk between these pathways. 
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4. Discussion 

During the first phase of my PhD studies we created an extensive database of human 

translocating proteins [24]. The database contains 213 manually curated translocating 

proteins which serve as a highly reviewed core of the database. Based on manually 

curated positive and negative learning sets we trained a machine learning algorithm to 

predict the translocation probability of a further ~13 000 proteins. These proteins are 

categorized as either high-confidence (1133 proteins) or low-confidence (3268 proteins) 

translocating proteins or non-translocating proteins (8665 proteins). We have also 

presented that the predictions of the Translocatome can be validated (via literature 

review) and are biologically valid. The performance of the prediction tool could be further 

enhanced in the future with the addition of other data layers, such as structural data (amino 

acid sequences), more complex network metrics data or combining these data with e.g. 

natural language processing (NLP) data.  

The Translocatome is available at http://translocatome.linkgroup.hu and its user-friendly 

web-interface provides search options (for localisations, for UniProt identifiers, for 

protein names, for TES etc.) and download options. Thus the Translocatome data can be 

utilised in other studies that aim to either focus on protein specific discoveries or studies 

focusing on a general understanding of subcellular dynamics and the role protein 

translocations play in that. 

Some limitations of the Translocatome could be resolved in the future, e.g. the extension 

of the database to incorporate other species (that are important in biological exploratory 

studies e.g. Drosophila melanogaster or Caenorhabditis elegans data), the further 

enrichment of the manually curated core of the database could enhance its predictive 

power and the implementation of a localisation based visualization tool may give an 

additional approach to our understanding of the data. The translocation of RNAs is also 

an emerging interesting topic [95] so incorporating those to our database would also be 

beneficial. 

At the time of the development of the Translocatome most high-throughput methods that 

were used to generate proteome level localisation data could only produce data at the 

level of subcellular organelles. As a consequence of that Veres et al. [10] defined 6 major 

subcellular compartments during the development of the ComPPI database and a 

http://translocatome.linkgroup.hu/
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localisation tree which orders minor (smaller scale) localisations into those 6 major 

compartments. We followed the same logic to keep the interoperability of our database 

with the ComPPI database. The resolution of high-throughput subcellular localisation 

detection methods will improve, thus redefinition of that 6 major localisations will be 

necessary. Moreover, we know more and more about how membraneless organelles play 

a pivotal role in the regulation of cellular homeostasis [16, 17, 96, 97]. Adding these 

organelles – formed after liquid-liquid phase transition – to the Translocatome would 

uncover a new layer of complexity to understand cellular compartmentalisation. 

In comparison with other existing databases (e.g. MoonProt or UniProt), those may also 

contain information on protein translocations but that is not always marked 

unequivocally. The 2.0 version of the MoonProt database [98] (accessed on 04/01/2018) 

contains 75 human proteins out of which 55 were translocating proteins based on 

literature data (these were incorporated in the manually curated core of the 

Translocatome). The other 20 moonlighting proteins achieved their multiple functions in 

the same subcellular compartment. Out of 20 239 human UniProt [22] proteins (accessed 

on 17 November 2017), based on their UniProt description or subcellular location data a 

translocation can be assumed in 1013 cases. But only 75 (35%) of the 213 manually 

curated core proteins of the Translocatome were included among the 1013 presumably 

translocating UniProt proteins, showing that UniProt’s list can be greatly supplemented 

by Translocatome data. From the remaining 938 UniProt translocation candidates 25% 

and 34% were predicted in the Translocatome as high- and low-confidence translocating 

proteins, respectively. 31% of the 938 UniProt proteins were predicted as non-

translocating while 10% of them were not part of the Translocatome database (because 

those proteins did not have an experimentally validated subcellular localisation in the 

ComPPI database). 

During the second phase of my PhD studies we proved the applicability of the 

Translocatome to study subcellular dynamics and compartment-specific functions. We 

created a compartmentalised Boolean model based on Translocatome data and proved its 

validity [24]. The compartmentalised model reproduced previous key experimental 

outcomes and through the ability to better capture compartment-specific functions and 

regulations of proteins our model outperformed the model of Steinway et al. [39] 
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We have shown that the predictions of the Translocatome database can be used to tailor 

the generation of compartmentalised models and a generalizable workflow can be built 

(Figure 9), where first predicted translocations are detected with the help of the 

Translocatome database. In the next stage of the workflow the compartmentalisation of 

the model was implemented. In our case this was a mainly manual process in which we 

reviewed each prediction based on available literature data, and carefully modified the 

original EMT model. For compartmentalised models to become standard there would be 

a need to automate this manual part of the process. Currently there are no available tools 

that can replace the manual curation process, as biological expertise, the ability to judge 

the importance of information from different sources and oversee the whole model are 

not yet probable to be replaced by an automated algorithm. With the implementation of 

the https://translocaboole.linkgroup.hu website we aimed to create a workflow where all 

possible steps are automated and we hope the future solutions will enable this in the case 

of the manual curation process as well. The modular design of our workflow makes it 

possible to adapt to these future advances by swapping some elements of it for an 

automated version. 

The complexity of the compartmentalisation process partly lies in the vast amount of 

combinations that are available to compartmentalise a node. In our paper we discussed 

all the possible node compartmentalisation scenarios (Mendik et al. 2022, Supplementary 

Figure 7 [67]). Even without accounting to the possible inputs and outputs there are 

already 9 scenarios, so simply testing all possible combinations algorithmically and then 

decide the valid setup based on the results would be impossible due to the large amount 

of available options.  

The compartmentalisation process also raises an interesting question regarding mass 

preservation. As we duplicate the number of nodes (if a protein resides in two different 

compartments) for a translocating protein, and those nodes not always mutually inhibit 

each other so hypothetically there could be scenarios where two nodes corresponding to 

one protein are active. This seemingly doubles the amount of that protein in our model, 

whereas other proteins are only represented with one node. Importantly, the functionality 

of a protein is not always proportional with its concentration. Moreover, local 

concentration is important which may drastically change even without translocation. 

Translocation of a protein to an organelle where it has interaction partners with high 

https://translocaboole.linkgroup.hu/
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affinity, would result in functional changes even if only a small amount of the protein is 

translocated and the original function in the other organelle may be preserved. In Boolean 

models the activity of a node signals the functionality of that given protein and that is not 

always proportional with the concentration of that protein (this topic is discussed in detail 

in Mendik et al. 2022, Supplementary Note 5 [67]). 

Comparing our model to other previous models we can conclude that there are not many 

available system level models of the EMT [40]. Smaller scale kinetic and ordinary 

differential equation (ODE) models focused on a very limited number of nodes, and those 

were shown to be useful in deciphering the phase diagram of an EMT model [99], to 

specifically model the shuttling of β-catenin [100] or to analyse the bistable switches of 

EMT [101]. These models are useful in the quantification of dynamics, but due to their 

high computational demand cannot be scaled up to model processes on a system level. 

The model of Font-Clos et al. [102] also stemmed from the original EMT model of 

Steinway et al. [39] but used a slightly modified modelling approach. They were able to 

reach a more symmetric and more diverse representation of the attractor states with this 

modified approach and the addition of the LIF/KLF4 pathway, but their model also 

mostly highlights kinetic aspects of the model and not certain biological scenarios. During 

our work we extensively compared our model to the Boolean model of Steinway et al. 

[39] and we showed how our model succeeded it in certain aspects. 

Our most important results uncovered some compartment-specific functions of proteins, 

namely those of the GSK3B and GLI proteins. GSK3B compartment-specifically 

inhibited EMT. Activation of GSK3B in the nucleus inhibited the activation of some key 

factors of EMT (Figure 10c). Almost simultaneously but independently from our 

research, Lee et al. [85] experimentally investigated EMT and they found in 

hepatocellular carcinoma (HCC) cells, that enhancing the nuclear translocation of 

GSK3B (i.e. the nuclear activation) suppressed EMT. Similarly, our compartment-

specific results regarding GLI transcription factors coincide with other studies showing 

aberrant GLI1 activation in DNA damage and carcinogenesis and that GLI1 activates 

EMT due to its transcriptional activity mainly through SNAI1 [103]. Interestingly, there 

are promising therapeutic targets among Sonic Hedgehog (SHH) pathway members 

[104]. GLI antagonists (GANTs) and another inhibitor of GLI functions, Arsenic trioxide 

(ATO) have both been shown effective [104]. Our results also highlighted GLI as an 
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important factor during EMT and this is in conjunction with the aforementioned 

experimental studies. Further analysis that incorporate more actors of the SHH pathway 

could shed light on novel, high impact interventions. 

As EMT was lately described as a multifaceted process [30], to define it in its whole 

complexity and plasticity in silico methods need to adapt their readouts. We have shown 

that our signalling readout is able to recapitulate key signalling events, but readouts 

regarding functional traits of systems would also be important. Although some high 

throughput functional data is available in the GO database [43, 44] (biological process 

terms are annotated to proteins), those terms are not compartmentalised. In order to create 

readouts where compartmentalised models can be functionally characterized those high 

throughput datasets need to adapt to these changing needs (discussed in depth in Mendik 

et al. 2022, Supplementary Note 4 [67]). 
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5. Conclusions 

These investigations conducted during my PhD studies significantly moved us closer to 

understand the role of translocating proteins in protein-protein interaction networks and 

to enable further system level studies to be carried out. Our new findings are the 

following: 

1. We collected and characterized a gold standard set of 213 translocating proteins 

and 139 non-translocating proteins. Using the XGBoost machine learning 

algorithm a Translocation Evidence Score (TES) was assigned to 13.066 human 

proteins. Based on the TES values we have predicted 1133 and 3268 high- and 

low-confidence translocating proteins, respectively.  

2. We created the Translocatome database (http://translocatome.linkgroup.hu) as a 

user-friendly tool showing these data. We demonstrated the use of the 

Translocatome database by the p63 protein, which wasn’t marked as a 

translocating protein in available databases, but after targeted literature review we 

could validate that it has roles in different organelles and cytoplasmic p63 

expression serves as a biomarker in prostate cancer. 

3. Translocating proteins are enriched between signalling proteins and the same 

enrichment is observed in the case of the proteins of epithelial-mesenchymal 

transition (EMT). 

4. We built a compartmentalised Boolean model of EMT and developed a user-

friendly tool, https://translocaboole.linkgroup.hu for an automated workflow of 

the process.  

5. Our in silico dynamic simulations on the compartmentalised model showed, that 

GSK3B compartment-specifically inhibits EMT and GLI transcription factors 

compartment-specifically drive EMT. 

http://translocatome.linkgroup.hu/
https://translocaboole.linkgroup.hu/
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6. Summary 

To summarize our efforts, we have created the Translocatome database, the first dedicated 

collection of human translocating proteins, with 213 manually curated core translocating 

proteins also including their interaction partners in the different subcellular localisations. 

Importantly, the Translocatome allowed the assessment of proteins’ translocation 

probability by annotating a Translocation Evidence Score (TES) to 13 066 human 

proteins. These features are accessible via a webpage, in a user-friendly manner. The 

database allowed a better comprehension of protein translocation as a systems biology 

phenomenon, and it can be used as a discovery-tool of the field [24].  

We have also presented that translocating proteins were enriched between proteins of the 

EMT. To model the compartment-specific functions of translocating proteins we created 

a compartmentalised Boolean dynamic and showed that GSK3B and GLI proteins, both 

alter the fate of EMT compartment-specifically. Based on our workflow future studies 

can also create compartmentalised models, aided by the algorithmic procedures available 

on the https://translocaboole.linkgroup.hu website and in the GitHub repository of our 

project. Our results underline that in order to model the physiological and pathological 

cellular behaviours and to rightly capture compartment-specific traits of proteins 

compartmentalised models should be used. This will also enhance the general 

understanding of subcellular dynamics [24]. As some translocating proteins are also 

important therapeutic targets [5, 6] the analysis of Translocatome data e.g. through studies 

that address the compartment-specific traits of biological processes and proteins may 

contribute to uncover new biomarkers and therapeutic targeting strategies ultimately to 

offer better future therapeutic options. 



45 
 

7. References 

1. Gabaldón T, Pittis AA. (2015) Origin and evolution of metabolic sub-cellular 

compartmentalization in eukaryotes. Biochimie, 119: 262-268. 

2. Barlan K, Rossow MJ, Gelfand VI. (2013) The journey of the organelle: 

teamwork and regulation in intracellular transport. Current Opinion in Cell 

Biology, 25: 483-488. 

3. Wang X, Li S. (2014) Protein mislocalization: Mechanisms, functions and clinical 

applications in cancer. Biochimica et Biophysica Acta (BBA) - Reviews on 

Cancer, 1846: 13-25. 

4. Prager GW, Braga S, Bystricky B, Qvortrup C, Criscitiello C, Esin E, Sonke GS, 

Martínez G, Frenel J-S, Karamouzis M, Strijbos M, Yazici O, Bossi P, Banerjee 

S, Troiani T, Eniu A, Ciardiello F, Tabernero J, Zielinski CC, Casali PG, Cardoso 

F, Douillard J-Y, Jezdic S, McGregor K, Bricalli G, Vyas M, Ilbawi A. (2018) 

Global cancer control: responding to the growing burden, rising costs and 

inequalities in access. ESMO Open, 3: e000285. 

5. Serrels A, Lund T, Serrels B, Byron A, McPherson Rhoanne C, von Kriegsheim 

A, Gómez-Cuadrado L, Canel M, Muir M, Ring Jennifer E, Maniati E, Sims 

Andrew H, Pachter Jonathan A, Brunton Valerie G, Gilbert N, Anderton 

Stephen M, Nibbs Robert JB, Frame Margaret C. (2015) Nuclear FAK controls 

chemokine transcription, Tregs, and evasion of anti-tumor immunity. Cell, 163: 

160-173. 

6. Frankowski KJ, Wang C, Patnaik S, Schoenen FJ, Southall N, Li D, Teper Y, Sun 

W, Kandela I, Hu D, Dextras C, Knotts Z, Bian Y, Norton J, Titus S, 

Lewandowska MA, Wen Y, Farley KI, Griner LM, Sultan J, Meng Z, Zhou M, 

Vilimas T, Powers AS, Kozlov S, Nagashima K, Quadri HS, Fang M, Long C, 

Khanolkar O, Chen W, Kang J, Huang H, Chow E, Goldberg E, Feldman C, Xi 

R, Kim HR, Sahagian G, Baserga SJ, Mazar A, Ferrer M, Zheng W, Shilatifard 

A, Aubé J, Rudloff U, Marugan JJ, Huang S. (2018) Metarrestin, a perinucleolar 

compartment inhibitor, effectively suppresses metastasis. Science Translational 

Medicine, 10: eaap8307. 



46 
 

7. Park S, Yang JS, Shin YE, Park J, Jang SK, Kim S. (2011) Protein localization as 

a principal feature of the etiology and comorbidity of genetic diseases. Mol Syst 

Biol, 7: 494. 

8. Laurila K, Vihinen M. (2009) Prediction of disease-related mutations affecting 

protein localization. BMC Genomics, 10: 122. 

9. Wang J, Sun T, Meng Z, Wang L, Li M, Chen J, Qin T, Yu J, Zhang M, Bie Z, 

Dong Z, Jiang X, Lin L, Zhang C, Liu Z, Jiang R, Yang G, Li L, Zhang Y, Huang 

D. (2021) XPO1 inhibition synergizes with PARP1 inhibition in small cell lung 

cancer by targeting nuclear transport of FOXO3a. Cancer Letters, 503: 197-212. 

10. Veres DV, Gyurko DM, Thaler B, Szalay KZ, Fazekas D, Korcsmaros T, 

Csermely P. (2015) ComPPI: a cellular compartment-specific database for 

protein-protein interaction network analysis. Nucleic Acids Res, 43: D485-493. 

11. Andrade MA, O’Donoghue SI, Rost B. (1998) Adaptation of protein surfaces to 

subcellular location Edited by F. E. Cohen. Journal of Molecular Biology, 276: 

517-525. 

12. Scott JD, Pawson T. (2009) Cell Signaling in space and time: Where proteins 

come together and when they’re apart. Science, 326: 1220-1224. 

13. Dean KM, Palmer AE. (2014) Advances in fluorescence labeling strategies for 

dynamic cellular imaging. Nature Chemical Biology, 10: 512-523. 

14. Day RN, Davidson MW. (2009) The fluorescent protein palette: tools for cellular 

imaging. Chemical Society Reviews, 38: 2887-2921. 

15. Liu T-L, Upadhyayula S, Milkie DE, Singh V, Wang K, Swinburne IA, 

Mosaliganti KR, Collins ZM, Hiscock TW, Shea J, Kohrman AQ, Medwig TN, 

Dambournet D, Forster R, Cunniff B, Ruan Y, Yashiro H, Scholpp S, Meyerowitz 

EM, Hockemeyer D, Drubin DG, Martin BL, Matus DQ, Koyama M, Megason 

SG, Kirchhausen T, Betzig E. (2018) Observing the cell in its native state: 

Imaging subcellular dynamics in multicellular organisms. Science, 360: 

eaaq1392. 

16. Hyman AA, Weber CA, Jülicher F. (2014) Liquid-liquid phase separation in 

biology. Annual Review of Cell and Developmental Biology, 30: 39-58. 

17. Alberti S, Dormann D. (2019) Liquid–liquid phase separation in disease. Annual 

Review of Genetics, 53: 171-194. 



47 
 

18. Lang P, Yeow K, Nichols A, Scheer A. (2006) Cellular imaging in drug discovery. 

Nature Reviews Drug Discovery, 5: 343-356. 

19. Gardy JL, Brinkman FSL. (2006) Methods for predicting bacterial protein 

subcellular localization. Nature Reviews Microbiology, 4: 741-751. 

20. Nair R, Rost B. Protein subcellular localization prediction using artificial 

intelligence technology. In:Thompson JD, Ueffing M ,Schaeffer-Reiss C (szerk.), 

Functional Proteomics: Methods and Protocols. Humana Press, Totowa, NJ, 2008: 

435-463. 

21. Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H, Alm T, 

Asplund A, Björk L, Breckels LM, Bäckström A, Danielsson F, Fagerberg L, Fall 

J, Gatto L, Gnann C, Hober S, Hjelmare M, Johansson F, Lee S, Lindskog C, 

Mulder J, Mulvey CM, Nilsson P, Oksvold P, Rockberg J, Schutten R, Schwenk 

JM, Sivertsson Å, Sjöstedt E, Skogs M, Stadler C, Sullivan DP, Tegel H, Winsnes 

C, Zhang C, Zwahlen M, Mardinoglu A, Pontén F, von Feilitzen K, Lilley KS, 

Uhlén M, Lundberg E. (2017) A subcellular map of the human proteome. Science, 

356: eaal3321. 

22. Consortium TU. (2020) UniProt: the universal protein knowledgebase in 2021. 

Nucleic Acids Research, 49: D480-D489. 

23. Gut G, Herrmann MD, Pelkmans L. (2018) Multiplexed protein maps link 

subcellular organization to cellular states. Science, 361: eaar7042. 

24. Mendik P, Dobronyi L, Hari F, Kerepesi C, Maia-Moco L, Buszlai D, Csermely 

P, Veres DV. (2019) Translocatome: a novel resource for the analysis of protein 

translocation between cellular organelles. Nucleic Acids Research, 47: D495-

D505. 

25. Dhillon PK, Barry M, Stampfer MJ, Perner S, Fiorentino M, Fornari A, Ma J, 

Fleet J, Kurth T, Rubin MA, Mucci LA. (2009) Aberrant cytoplasmic expression 

of p63 and prostate cancer mortality. Cancer Epidemiology Biomarkers 

Prevention, 18: 595-600. 

26. Lundberg E, Borner GHH. (2019) Spatial proteomics: a powerful discovery tool 

for cell biology. Nature Reviews Molecular Cell Biology, 20: 285-302. 



48 
 

27. Wainstein E, Seger R. (2016) The dynamic subcellular localization of ERK: 

mechanisms of translocation and role in various organelles. Current Opinion in 

Cell Biology, 39: 15-20. 

28. Nieto MA, Huang Ruby Y-J, Jackson Rebecca A, Thiery Jean P. (2016) EMT: 

2016. Cell, 166: 21-45. 

29. Yang J, Weinberg RA. (2008) Epithelial-mesenchymal transition: at the 

crossroads of development and tumor metastasis. Dev Cell, 14: 818-829. 

30. Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano 

A, Casanova J, Christofori G, Dedhar S, Derynck R, Ford HL, Fuxe J, 

García de Herreros A, Goodall GJ, Hadjantonakis A-K, Huang RJY, Kalcheim C, 

Kalluri R, Kang Y, Khew-Goodall Y, Levine H, Liu J, Longmore GD, Mani SA, 

Massagué J, Mayor R, McClay D, Mostov KE, Newgreen DF, Nieto MA, 

Puisieux A, Runyan R, Savagner P, Stanger B, Stemmler MP, Takahashi Y, 

Takeichi M, Theveneau E, Thiery JP, Thompson EW, Weinberg RA, Williams 

ED, Xing J, Zhou BP, Sheng G, On behalf of the EMTIA. (2020) Guidelines and 

definitions for research on epithelial–mesenchymal transition. Nature Reviews 

Molecular Cell Biology, 21: 341-352. 

31. Gonzalez DM, Medici D. (2014) Signaling mechanisms of the epithelial-

mesenchymal transition. Science Signaling, 7: re8. 

32. Chaw SY, Abdul Majeed A, Dalley AJ, Chan A, Stein S, Farah CS. (2012) 

Epithelial to mesenchymal transition (EMT) biomarkers – E-cadherin, beta-

catenin, APC and Vimentin – in oral squamous cell carcinogenesis and 

transformation. Oral Oncology, 48: 997-1006. 

33. Csermely P, Korcsmáros T, Kiss HJM, London G, Nussinov R. (2013) Structure 

and dynamics of molecular networks: A novel paradigm of drug discovery: A 

comprehensive review. Pharmacology & Therapeutics, 138: 333-408. 

34. Hastings JF, O'Donnell YEI, Fey D, Croucher DR. (2020) Applications of 

personalised signalling network models in precision oncology. Pharmacology & 

Therapeutics, 212: 107555. 

35. Hyduke DR, Palsson BØ. (2010) Towards genome-scale signalling-network 

reconstructions. Nature Reviews Genetics, 11: 297-307. 



49 
 

36. Albert I, Thakar J, Li S, Zhang R, Albert R. (2008) Boolean network simulations 

for life scientists. Source Code Biol Med, 3: 16. 

37. Sherekar S, Viswanathan GA. (2021) Boolean dynamic modeling of cancer 

signaling networks: Prognosis, progression, and therapeutics. Computational and 

Systems Oncology, 1: e1017. 

38. Wang R-S, Saadatpour A, Albert R. (2012) Boolean modeling in systems biology: 

an overview of methodology and applications. Physical Biology, 9: 055001. 

39. Steinway SN, Zanudo JG, Ding W, Rountree CB, Feith DJ, Loughran TP, Jr., 

Albert R. (2014) Network modeling of TGFbeta signaling in hepatocellular 

carcinoma epithelial-to-mesenchymal transition reveals joint sonic hedgehog and 

Wnt pathway activation. Cancer Res, 74: 5963-5977. 

40. Burger GA, Danen EHJ, Beltman JB. (2017) Deciphering epithelial-

mesenchymal transition regulatory networks in cancer through computational 

approaches. Front Oncol, 7: 162. 

41. Mani M, Chen C, Amblee V, Liu H, Mathur T, Zwicke G, Zabad S, Patel B, 

Thakkar J, Jeffery CJ. (2015) MoonProt: a database for proteins that are known 

to moonlight. Nucleic Acids Res, 43: D277-282. 

42. Chen T, Guestrin C. (2016) XGBoost: A scalable tree boosting system. In: 

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge 

Discovery and Data Mining, doi:10.1145/2939672.2939785 pp. 785–794, 

Association for Computing Machinery, San Francisco, California, USA 

43. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, 

Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis 

A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. 

(2000) Gene ontology: tool for the unification of biology. The Gene Ontology 

Consortium. Nat Genet, 25: 25-29. 

44. The Gene Ontology Consortium. (2016) Expansion of the Gene Ontology 

knowledgebase and resources. Nucleic Acids Research, 45: D331-D338. 

45. Friedman JH. (2001) Greedy function approximation: A gradient boosting 

machine. The Annals of Statistics, 29: 1189-1232. 



50 
 

46. Kerepesi C, Daróczy B, Sturm Á, Vellai T, Benczúr A. (2018) Prediction and 

characterization of human ageing-related proteins by using machine learning. 

Scientific Reports, 8: 4094. 

47. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. (2016) KEGG: new 

perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research, 

45: D353-D361. 

48. Basit AH, Abbasi WA, Asif A, Gull S, Minhas FUAA. (2018) Training host-

pathogen protein–protein interaction predictors. Journal of Bioinformatics and 

Computational Biology, 16: 1850014. 

49. Chen X, Huang L, Xie D, Zhao Q. (2018) EGBMMDA: Extreme gradient 

boosting machine for miRNA-disease association prediction. Cell Death & 

Disease, 9: 3. 

50. Zou LS, Erdos MR, Taylor DL, Chines PS, Varshney A, Parker SCJ, Collins FS, 

Didion JP, The McDonnell Genome I. (2018) BoostMe accurately predicts DNA 

methylation values in whole-genome bisulfite sequencing of multiple human 

tissues. BMC Genomics, 19: 390. 

51. Kovács IA, Palotai R, Szalay MS, Csermely P. (2010) Community landscapes: 

An integrative approach to determine overlapping network module hierarchy, 

identify key nodes and predict network dynamics. PLOS ONE, 5: e12528. 

52. Barabási A-L, Albert R. (1999) Emergence of scaling in random networks. 

Science, 286: 509-512. 

53. Smith JM, Koopman PA. (2004) The ins and outs of transcriptional control: 

nucleocytoplasmic shuttling in development and disease. Trends in Genetics, 20: 

4-8. 

54. Lu Z, Hunter T. (2018) Metabolic kinases moonlighting as protein kinases. Trends 

in Biochemical Sciences, 43: 301-310. 

55. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, 

Ruland J, Penninger JM, Siderovski DP, Mak TW. (1998) Negative regulation of 

PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell, 95: 29-39. 

56. Teruel MN, Meyer T. (2000) Translocation and reversible localization of 

signaling proteins: A dynamic future for signal transduction. Cell, 103: 181-184. 



51 
 

57. Zhou Z, Luo M-j, Straesser K, Katahira J, Hurt E, Reed R. (2000) The protein Aly 

links pre-messenger-RNA splicing to nuclear export in metazoans. Nature, 407: 

401-405. 

58. Shaw DJ, Eggleton P, Young PJ. (2008) Joining the dots: Production, processing 

and targeting of U snRNP to nuclear bodies. Biochimica et Biophysica Acta 

(BBA) - Molecular Cell Research, 1783: 2137-2144. 

59. Szalay-Bekő M, Palotai R, Szappanos B, Kovács IA, Papp B, Csermely P. (2012) 

ModuLand plug-in for Cytoscape: Determination of hierarchical layers of 

overlapping network modules and community centrality. Bioinformatics, 28: 

2202-2204. 

60. Ota M, Gonja H, Koike R, Fukuchi S. (2016) Multiple-localization and hub 

proteins. PLOS ONE, 11: e0156455. 

61. Davies RG, Wagstaff KM, McLaughlin EA, Loveland KL, Jans DA. (2013) The 

BRCA1-binding protein BRAP2 can act as a cytoplasmic retention factor for 

nuclear and nuclear envelope-localizing testicular proteins. Biochimica et 

Biophysica Acta (BBA) - Molecular Cell Research, 1833: 3436-3444. 

62. Paietta E. (1996) Adhesion molecules in acute myeloid leukemia. Leukemia 

Research, 20: 795-798. 

63. Takagi S, Saito Y, Hijikata A, Tanaka S, Watanabe T, Hasegawa T, Mochizuki S, 

Kunisawa J, Kiyono H, Koseki H, Ohara O, Saito T, Taniguchi S, Shultz LD, 

Ishikawa F. (2012) Membrane-bound human SCF/KL promotes in vivo human 

hematopoietic engraftment and myeloid differentiation. Blood, 119: 2768-2777. 

64. Levrero M, De Laurenzi V, Costanzo A, Gong J, Wang JY, Melino G. (2000) The 

p53/p63/p73 family of transcription factors: Overlapping and distinct functions. 

Journal of Cell Science, 113: 1661-1670. 

65. Mills AA, Zheng B, Wang X-J, Vogel H, Roop DR, Bradley A. (1999) p63 is a 

p53 homologue required for limb and epidermal morphogenesis. Nature, 398: 

708-713. 

66. Narahashi T, Niki T, Wang T, Goto A, Matsubara D, Funata N, Fukayama M. 

(2006) Cytoplasmic localization of p63 is associated with poor patient survival in 

lung adenocarcinoma. Histopathology, 49: 349-357. 



52 
 

67. Mendik P, Kerestely M, Kamp S, Deritei D, Kunsic N, Vassy Z, Csermely P, 

Veres DV. (2022) Translocating proteins compartment-specifically alter the fate 

of epithelial-mesenchymal transition in a compartmentalized Boolean network 

model. npj Syst Biol Appl, 8: 19 

68. Kauffman SA. (1969) Metabolic stability and epigenesis in randomly constructed 

genetic nets. Journal of Theoretical Biology, 22: 437-467. 

69. Rozum JC, Gomez Tejeda Zanudo J, Gan X, Deritei D, Albert R. (2021) Parity 

and time reversal elucidate both decision-making in empirical models and 

attractor scaling in critical Boolean networks. Sci Adv, 7: eabf8124. 

70. Ikushima H, Miyazono K. (2010) TGFβ signalling: a complex web in cancer 

progression. Nature Reviews Cancer, 10: 415-424. 

71. Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F. (2002) Wnt/beta-

catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of 

the signaling pathway. Mol Cell Biol, 22: 1172-1183. 

72. Gupta S, Takebe N, Lorusso P. (2010) Targeting the Hedgehog pathway in cancer. 

Ther Adv Med Oncol, 2: 237-250. 

73. Korpal M, Lee ES, Hu G, Kang Y. (2008) The miR-200 family inhibits epithelial-

mesenchymal transition and cancer cell migration by direct targeting of E-

cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem, 283: 14910-

14914. 

74. Sánchez-Tilló E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, Darling 

DS, Dean DC, Castells A, Postigo A. (2012) EMT-activating transcription factors 

in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci, 69: 3429-

3456. 

75. Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, Hartwell K, 

Onder TT, Gupta PB, Evans KW, Hollier BG, Ram PT, Lander ES, Rosen JM, 

Weinberg RA, Mani SA. (2010) Core epithelial-to-mesenchymal transition 

interactome gene-expression signature is associated with claudin-low and 

metaplastic breast cancer subtypes. Proc Natl Acad Sci U S A, 107: 15449-15454. 

76. Casas E, Kim J, Bendesky A, Ohno-Machado L, Wolfe CJ, Yang J. (2011) Snail2 

is an essential mediator of Twist1-induced epithelial mesenchymal transition and 

metastasis. Cancer Res, 71: 245-254. 



53 
 

77. Dave N, Guaita-Esteruelas S, Gutarra S, Frias À, Beltran M, Peiró S, de Herreros 

AG. (2011) Functional cooperation between Snail1 and twist in the regulation of 

ZEB1 expression during epithelial to mesenchymal transition. J Biol Chem, 286: 

12024-12032. 

78. Natsuizaka M, Whelan KA, Kagawa S, Tanaka K, Giroux V, 

Chandramouleeswaran PM, Long A, Sahu V, Darling DS, Que J, Yang Y, Katz 

JP, Wileyto EP, Basu D, Kita Y, Natsugoe S, Naganuma S, Klein-Szanto AJ, 

Diehl JA, Bass AJ, Wong KK, Rustgi AK, Nakagawa H. (2017) Interplay between 

Notch1 and Notch3 promotes EMT and tumor initiation in squamous cell 

carcinoma. Nat Commun, 8: 1758. 

79. Chanrion M, Kuperstein I, Barrière C, El Marjou F, Cohen D, Vignjevic D, 

Stimmer L, Paul-Gilloteaux P, Bièche I, Tavares Sdos R, Boccia GF, Cacheux W, 

Meseure D, Fre S, Martignetti L, Legoix-Né P, Girard E, Fetler L, Barillot E, 

Louvard D, Zinovyev A, Robine S. (2014) Concomitant Notch activation and p53 

deletion trigger epithelial-to-mesenchymal transition and metastasis in mouse gut. 

Nat Commun, 5: 5005. 

80. Kurimoto R, Iwasawa S, Ebata T, Ishiwata T, Sekine I, Tada Y, Tatsumi K, Koide 

S, Iwama A, Takiguchi Y. (2016) Drug resistance originating from a TGF-β/FGF-

2-driven epithelial-to-mesenchymal transition and its reversion in human lung 

adenocarcinoma cell lines harboring an EGFR mutation. Int J Oncol, 48: 1825-

1836. 

81. Lemieux E, Bergeron S, Durand V, Asselin C, Saucier C, Rivard N. (2009) 

Constitutively active MEK1 is sufficient to induce epithelial-to-mesenchymal 

transition in intestinal epithelial cells and to promote tumor invasion and 

metastasis. Int J Cancer, 125: 1575-1586. 

82. Buonato JM, Lazzara MJ. (2014) ERK1/2 blockade prevents epithelial-

mesenchymal transition in lung cancer cells and promotes their sensitivity to 

EGFR inhibition. Cancer Res, 74: 309-319. 

83. Mitra T, Roy SS. (2017) Co-activation of TGFβ and Wnt signalling pathways 

abrogates EMT in ovarian cancer cells. Cell Physiol Biochem, 41: 1336-1345. 



54 
 

84. Li S, Wang D, Zhao J, Weathington NM, Shang D, Zhao Y. (2018) The 

deubiquitinating enzyme USP48 stabilizes TRAF2 and reduces E-cadherin-

mediated adherens junctions. FASEB J, 32: 230-242. 

85. Lee S, Choi EJ, Cho EJ, Lee YB, Lee JH, Yu SJ, Yoon JH, Kim YJ. (2020) 

Inhibition of PI3K/Akt signaling suppresses epithelial-to-mesenchymal transition 

in hepatocellular carcinoma through the Snail/GSK-3/beta-catenin pathway. Clin 

Mol Hepatol, 26: 529-539. 

86. Li J, Xing M, Zhu M, Wang X, Wang M, Zhou S, Li N, Wu R, Zhou M. (2008) 

Glycogen synthase kinase 3beta induces apoptosis in cancer cells through increase 

of survivin nuclear localization. Cancer Lett, 272: 91-101. 

87. Zhang J, Tian XJ, Xing J. (2016) Signal transduction pathways of EMT induced 

by TGF-β, SHH, and WNT and their crosstalks. J Clin Med, 5: 41. 

88. Niewiadomski P, Niedziółka SM, Markiewicz Ł, Uśpieński T, Baran B, 

Chojnowska K. (2019) Gli proteins: regulation in development and cancer. Cells, 

8: 147. 

89. Szczepny A, Wagstaff KM, Dias M, Gajewska K, Wang C, Davies RG, Kaur G, 

Ly-Huynh J, Loveland KL, Jans DA. (2014) Overlapping binding sites for 

importin β1 and suppressor of fused (SuFu) on glioma-associated oncogene 

homologue 1 (Gli1) regulate its nuclear localization. Biochem J, 461: 469-476. 

90. Behan FM, Iorio F, Picco G, Goncalves E, Beaver CM, Migliardi G, Santos R, 

Rao Y, Sassi F, Pinnelli M, Ansari R, Harper S, Jackson DA, McRae R, Pooley 

R, Wilkinson P, van der Meer D, Dow D, Buser-Doepner C, Bertotti A, Trusolino 

L, Stronach EA, Saez-Rodriguez J, Yusa K, Garnett MJ. (2019) Prioritization of 

cancer therapeutic targets using CRISPR-Cas9 screens. Nature, 568: 511-516. 

91. Javelaud D, Alexaki VI, Dennler S, Mohammad KS, Guise TA, Mauviel A. 

(2011) TGF-β/SMAD/GLI2 signaling axis in cancer progression and metastasis. 

Cancer Res, 71: 5606-5610. 

92. Javelaud D, Pierrat MJ, Mauviel A. (2012) Crosstalk between TGF-β and 

hedgehog signaling in cancer. FEBS Lett, 586: 2016-2025. 

93. Lindsey S, Langhans SA. (2014) Crosstalk of oncogenic signaling pathways 

during epithelial-mesenchymal transition. Front Oncol, 4: 358. 



55 
 

94. Klüppel M, Wrana JL. (2005) Turning it up a Notch: cross-talk between TGF beta 

and Notch signaling. Bioessays, 27: 115-118. 

95. Das S, Ferlito M, Kent OA, Fox-Talbot K, Wang R, Liu D, Raghavachari N, Yang 

Y, Wheelan SJ, Murphy E, Steenbergen C. (2012) Nuclear miRNA regulates the 

mitochondrial genome in the heart. Circulation Research, 110: 1596-1603. 

96. Banani SF, Lee HO, Hyman AA, Rosen MK. (2017) Biomolecular condensates: 

organizers of cellular biochemistry. Nature Reviews Molecular Cell Biology, 18: 

285-298. 

97. Wang B, Zhang L, Dai T, Qin Z, Lu H, Zhang L, Zhou F. (2021) Liquid–liquid 

phase separation in human health and diseases. Signal Transduction and Targeted 

Therapy, 6: 290. 

98. Chen C, Liu H, Zabad S, Rivera N, Rowin E, Hassan M, Gomez De Jesus SM, 

Llinás Santos PS, Kravchenko K, Mikhova M, Ketterer S, Shen A, Shen S, Navas 

E, Horan B, Raudsepp J, Jeffery C. (2020) MoonProt 3.0: an update of the 

moonlighting proteins database. Nucleic Acids Research, 49: D368-D372. 

99. He P, Qiu K, Jia Y. (2018) Modeling of mesenchymal hybrid epithelial state and 

phenotypic transitions in EMT and MET processes of cancer cells. Scientific 

Reports, 8: 14323. 

100. Schmitz Y, Rateitschak K, Wolkenhauer O. (2013) Analysing the impact of 

nucleo-cytoplasmic shuttling of β-catenin and its antagonists APC, Axin and 

GSK3 on Wnt/β-catenin signalling. Cellular Signalling, 25: 2210-2221. 

101. Tian X-J, Zhang H, Xing J. (2013) Coupled reversible and irreversible bistable 

switches underlying TGFβ-induced epithelial to mesenchymal transition. 

Biophysical Journal, 105: 1079-1089. 

102. Font-Clos F, Zapperi S, La Porta CAM. (2018) Topography of epithelial-

mesenchymal plasticity. Proc Natl Acad Sci U S A, 115: 5902-5907. 

103. Palle K, Mani C, Tripathi K, Athar M. (2015) Aberrant GLI1 activation in DNA 

damage response, carcinogenesis and chemoresistance. Cancers (Basel), 7: 2330-

2351. 

104. Rimkus TK, Carpenter RL, Qasem S, Chan M, Lo HW. (2016) Targeting the sonic 

hedgehog signaling pathway: Review of smoothened and GLI Inhibitors. Cancers 

(Basel), 8: 22. 



56 
 

8. Bibliography of the candidate’s publications 

8.1 Publications directly related to this thesis 

Mendik P, Dobronyi L, Hari F, Kerepesi C, Maia-Moco L, Buszlai D, Csermely P, 

Veres DV. (2019) Translocatome: a novel resource for the analysis of protein 

translocation between cellular organelles. Nucleic Acids Research, 47: D495-D505. 

Mendik P, Kerestely M, Kamp S, Deritei D, Kunsic N, Vassy Z, Csermely P, Veres DV. 

(2022) Translocating proteins compartment-specifically alter the fate of epithelial-

mesenchymal transition in a compartmentalized Boolean network model. npj Syst Biol 

Appl, 8: 19 

8.2 Publications indirectly related to this thesis 

Csermely P, Kunsic N, Mendik P, Kerestely M, Farago T, Veres DV, Tompa P. (2020) 

Learning of signaling networks: Molecular mechanisms. Trends Biochem Sci, 45: 284-

294 



57 
 

9. Individual contributions 

 Manual curation of translocating proteins 

 Designing the structure of the Translocatome database 

 Biologically validating the results of the XGBoost algorithm (feature set, 

predicted translocations) 

 Defining biologically valid protein categories and the logic behind each class 

 Designing the structure and functionality of the Translocatome website 

 Conceiving the idea of the compartmentalised Boolean modelling project and 

designing the appropriate study 

 Carried out manual curation of predicted translocating proteins in EMT and 

being responsible for the creation of the Boolean rules in cooperation with Márk 

Kerestély 

 Enrichment analysis of translocating proteins between signalling and EMT 

proteins 

 Running dynamic simulations on the compartmentalised model and analysing 

results  

 Creating data analysis and visualization and generation of some figures and 

tables 

 Designing the structure and functionality of the Translocaboole website 



58 
 

10. Acknowledgements 

This part of my thesis tries to list the people who I owe an enormous amount of gratitude 

because they significantly helped me to achieve my goals. Although I tried to collect 

everyone, but surely this list will not be complete. I believe that all human connections 

are special and there were probably a lot of interactions that I didn’t even consider as 

relevant – or maybe at the time even considered to be a nuisance – but deep down those 

have also influenced my thinking and pushed me to find meaningful answers. 

First of all, I am grateful to my family: my wife, my parents, my sisters, for supporting 

me and creating an environment where I could pursue my ambitions and supporting me 

when I encountered obstacles. 

I’m lucky that I had the opportunity to work in such an excellent research group as the 

LINK-Group. I appreciate Prof Péter Csermely for creating this unparalleled environment 

– which is I believe very unique and enabled many young researchers to spread their 

wings –  and for welcoming me with open arms to this community. He and Dániel Veres 

MD PhD introduced me to the enthralling world of networks and how to navigate this 

field with always keeping an eye on the clinical usability as well. 

My experience would have been very different if I hadn’t had the chance to work with 

such wonderful colleagues, I greatly appreciate the opportunity to work together with 

Levente Dobronyi, with whom we proved that a professional collaboration musn’t negate 

fun and work can be enjoyed. I admire Márk Kerestély who has an incredible inner drive 

to find details and scientific truth, I’m happy that I could work with him. I also thank all 

the co-authors of our papers for their contributions. 

I thank all current and previous Heads of the Department of Molecular Biology and other 

colleagues for providing the excellent background for these studies. 

During my studies I have received funding via the following grants and sources: 

Hungarian National Research Development and Innovation Office [OTKA K115378]; 

New National Excellence Program of the Hungarian Ministry of Human Capacities 

(ÚNKP-16-2-41); Higher Education Institutional Excellence Programme of the Ministry 

of Human Capacities in Hungary ‘2018-1.2.1-NKP-00008: Exploring the Mathematical 

Foundations of Artificial Intelligence’ grant; Thematic Excellence Programme 



59 
 

(Tématerületi Kiválósági Program, 2020-4.1.1.-TKP2020, TKP2021-EGA-24) of the 

Ministry for Innovation and Technology in Hungary, within the framework of the 

Molecular Biology thematic programme of the Semmelweis University; ÚNKP-20-III-2-

SE-23 New National Excellence Program of the Ministry for Innovation and Technology 

from the source of the National Research, Development and Innovation fund. 

 


