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1. INTRODUCTION 

The mammalian retina is a neuroectodermal tissue specialized in detecting and 

transforming light into electric impulses. The retina consists of six main types of neural 

and additional glial cells in a highly organized arrangement, which in combination with 

its relatively easy histological harvesting and isolation methods makes it a widely used 

and popular model in neuroscience. Diabetes mellitus (DM) is a systemic disease 

affecting several organ systems through microangiopathy and neurodegeneration. The 

complications associated with DM are a severe burden on modern societies, which is 

also due to its socioeconomic impact.  

In the present work we assess the retinal changes associated with diabetes mellitus in a 

clinical setting and in an animal model, coupled with some aspects in the development 

of automated screening tools for diabetic retinopathy (DR).  

1.1. The structure of the mammalian retina 

The mammalian retina can be divided into two parts based on its sensitivity to light 

impulses. The area separating these two parts is called the ora serrata. The 

light-sensitive part can be divided into the retinal pigment epithelium (RPE) and the 

neural retina. The latter consists of several layers of cell bodies and dendrites in the 

following order from the RPE towards the vitreous: outer segments (OS); inner 

segments (IS) and nuclei (outer nuclear layer – ONL) of the photoreceptors; outer 

plexiform synaptic layer (OPL); inner nuclear layer (INL) including the cell bodies of 

bipolar, amacrine, and horizontal cells; inner plexiform layer (IPL); and finally the cell 

bodies (ganglion cell layer – GCL) and axons (retinal nerve fiber layer - RNFL) of the 

retinal ganglion cells. The RNFL runs into and builds the optic nerve (ON), forwarding 

the electric impulses towards specific cerebral regions [1]. Finally, there are two further 

retinal layers mainly built up by the pedicles of the Müller glia cells, and the outer and 

inner limiting membranes (OLM and ILM) [2]. 

1.1.1. The histological particularities of the human and rat retinas 

In contrast to other mammals, the primate retina has an approximately 5500 µm 

diameter area located in the visual axis, called the macula lutea. In the central 250-350 

µm of the fovea is the foveola, containing exclusively a large number of cones. Moving 
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outwards, the density of cones decreases until it reaches rod dominance outside the 

macula lutea [3, 4]. Moreover, the vasculature of the human retina forms a temporal and 

nasal arcade, whereas the capillaries border the central foveal avascular zone. 

Rats, being nocturnally active animals, have retinas with general rod dominance and 

only a fraction of the cone density of the human retina [5]. There is no macula lutea or 

fovea on the posterior pole; rats instead have a broad longitudinal zone called the visual 

streak with a higher proportion of cone photoreceptors. As opposed to the human retina, 

the retinal blood vessels are radially organized [4, 6]. 

1.1.2. Zucker Diabetic Fatty rat – animal model of type 2 diabetes mellitus 

A number of different animal models of type 2 diabetes mellitus (T2DM) are available 

that develop a partial or complete insulin deficiency-induced hyperglycemia, insulin 

resistance, and a pancreatic β-cell deficiency mostly but not necessarily accompanied by 

obesity, which is a key component of T2DM. This obesity can be caused by a 

spontaneous or voluntary mutation of leptin or its receptor [7]. In our studies, we used 

Zucker Diabetic Fatty rats (ZDF) in which T2DM occurs in the males at the age of 8-10 

weeks as a result of a leptin receptor mutation and a hitherto unidentified transcriptional 

β-cell defect [8]. The leptin receptor homozygous recessive rats (ZDFfa/fa) become 

obese with significantly elevated glycosylated hemoglobin, free fatty acid, triglyceride, 

and cholesterol; from the age of twelve weeks they have persistently elevated blood 

glucose levels [9, 10]. As a result of β-cell apoptosis, their insulin levels drop 

substantially approximately two months later, resembling the pathomechanism of 

human T2DM [10, 11]. Meanwhile, the control group (ZDF lean) with the dominant 

allele of the leptin receptor mutation (ZDF Fa/Fa or Fa/fa) does not show any signs of 

DM. At the initial stage, a hyperinsulinemia is characteristic in ZDF rats.  

1.2. The ophthalmological aspects of diabetes mellitus 

DM is a chronic metabolic disease with not only a severely impaired carbohydrate 

metabolism but concomitantly also an impaired lipid and protein turnover due to the 

complete or relative insulin production deficiency and thus the lack of the insulin effect 

[12]. 
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The complications of DM can affect almost all structures of the eye. Infections of the 

eyelids, cornea, and conjunctiva; accommodation disorders; a characteristic "snowflake 

cataract"; primary open-angle glaucoma; and recurrent injuries of the cornea due to poor 

wound healing are common. Diabetic neuropathy (DNP) can affect the cranial nerves as 

well as the ocular muscles, and early on may lead to diabetic keratopathy [13]. 

Microangiopathy and ischemia can drive the production of various growth factors and 

thus lead to neovascularization, which may in turn lead to secondary rubeotic glaucoma, 

both of which have poor visual prognosis. Transient visual disturbances can occur 

during hyperglycemic episodes due to osmotic thickening of the lens, while permanent 

visual impairment occurs mostly due to diabetic macular edema (DME) or proliferative 

diabetic retinopathy (PDR). It is known that DM patients with poor glycemic control 

develop visually significant cataracts approximately 5 years earlier than average. 

1.2.1. Pathophysiology – diabetic neuropathy and microangiopathy in the eye 

Impaired glucose metabolism in DM causes an emergence of alternative pathways of 

carbohydrate turnover (e.g., the sorbitol, hexosamine, or AGE-related pathways) [14]. 

These together lead to the increased activation of protein kinase C and the accumulation 

of reactive oxidative and advanced glycation products, which on the one hand directly 

alter the protein synthesis, while on the other hand increase the cytoplasmic levels of 

different inflammatory mediators and growth factors (interleukins, vascular endothelial, 

platelet-derived and insulin-like growth factors etc.) [15]. 

With the acceleration of protein glycation and cytokine accumulation, morphological 

and functional damage occurs: increased blood viscosity and platelet adhesion, 

thickening of the capillary basement membranes, and abnormal endothelial proliferation 

lead to focal capillary thromboses and later retinal ischemia. Meanwhile, pericyte 

damage paired with impairment of the endothelial tight junctions and weakening of the 

capillary walls results in intraretinal hemorrhages as well as to fluid and protein 

extravasation, leading to further deterioration of the blood supply [16].  

The role of diabetic neurodegeneration in the development of DR has been recently 

explored in more detail. Animal studies have shown histological changes such as 

amacrine and Müller-cell apoptosis, whereas thickness alterations of the retina or its 

different layers (RNFL, GCL, IPL) were reported by optical coherence tomography 
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(OCT) in early stages of DR [17-22]. Early functional changes in humans such as 

reduced contrast sensitivity or electroretinographic alterations point to a 

neurodegenerative component of DR before the appearance of the typical diabetic 

changes [23, 24]. 

1.2.2. Diabetic retinopathy 

Worldwide estimates suggest that after a disease duration of twenty years, 75% of 

T1DM and 50% of T2DM patients develop at least some form of DR [25]. Other 

evidence suggests that already after a fifteen-year disease duration, 10% of DM patients 

experience severe visual impairment, with 2% being legally blind [26]. 

In Hungary in particular, Tóth et al. described a prevalence of DM (798,300) and DR 

(160,500) among the Hungarian population over 50 years of age in 2018 [27]. 

According to their work, the yearly costs in Hungary related to diabetes will rise from 

146 million USD (2016) to 168 million USD by 2045, with current annual per-patient 

costs of almost 200 USD [28]. 

Characteristic early signs of retinal damage are the microaneurysms, intraretinal 

bleeding, and microinfarcts caused by the disturbances of the axonal circulation with 

surrounding focal edema called cotton-wool spots. Later on, due to the increased growth 

factor production, existing small blood vessels transform increased endothelial 

proliferation and shunt formation, resulting in intraretinal microvascular abnormalities 

or retinal neovascularization. This latter sign is a characteristic of the most advanced, 

sight-threatening stage of DRP, called proliferative diabetic retinopathy. At this stage, 

the consequent retinal ischemia leads to abnormal vascular proliferation and fibrotic 

transformation, and hence to the development of vitreous hemorrhages, vitreoretinal 

traction, and retinal tear or detachment, resulting in the loss of vision. 

The severity grading of DR and DME in clinical trials is still based on the Early 

Treatment Diabetic Retinopathy Study (ETDRS) severity scale that serves as the gold 

standard, its use has proven to be complicated for everyday practice. A simplified 

classification of DR and DME based on the ETDRS criteria was developed by the 

American Academy of Ophthalmology (AAO), called the International Clinical 

Diabetic Retinopathy Disease/Macular Edema Severity Scale; this allows a rapid 
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classification with technical requirements that are more suitable for the everyday 

clinical setting [29]. 

1.2.3. Diabetic macular edema 

Due to the aforementioned impairment of the capillary barrier function in the macula, 

the extravasation of proteins and lipids may lead to macular edema and the formation of 

lipid deposits (also called hard exudates). DME can cause severe visual impairment in 

patients with diabetes and is, in fact, the major cause for vision loss in DM [26]. The 

stronger adhesion of the ILM to the vitreous limiting membrane may also facilitate 

DME formation due to vitreoretinal traction [30]. 

It is important to clarify that DME is not a separate stage of DR, but an independent 

entity that can manifest at any stage of the disease. The classification of DME by the 

AAO distinguishes mild, moderate, and severe stages based on the findings observable 

on dilated funduscopy [29]. 

1.2.4. Epidemiological, economic, and health system related considerations 

The World Health Organization reports that the number of people affected by DM has 

risen from 108 million to 537 million in the last 40 years, and is predicted to grow 

further to 643 million by 2030 [31, 32]. The 2021 report of the International Diabetes 

Federation (IDF) suggest that 75% of adult diabetics come from countries with low or 

middle income [31]. The health expenditure caused by DM in 2021 was as high as 966 

billion dollars worldwide – a 316% increase over the last 15 years [31]. The 

improvements in healthcare and the lifestyle changes of the last few decades have 

contributed to DM becoming the number-one cause of preventable blindness among 

working-age adults. That is, severe vision loss unnecessarily develops in a large number 

of patients; appropriate treatment alone could lower the risk of moderate vision loss or 

blindness due to DM by more than 90% [33]. The limited availability of trained human 

graders and retina specialists is also a major problem throughout the world. As a 

consequence, because of the growing population  automated approaches with less 

human interaction will inevitably spread over time [34]. 

1.3. Medical imaging in diabetic retinopathy and maculopathy 
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The role of medical imaging has become more significant in modern medicine, which 

comes with an increasing need for expertise in the interpretation of images and in the 

evaluation of datasets [35, 36]. The retina provides an ideal target for imaging due to the 

transparent media of the eye, and this advantage is widely exploited in ophthalmology 

by myriad imaging techniques. Due to space constrains, for the purposes of this thesis 

we describe only color fundus photography and optical coherence tomography below. 

1.3.1. Color fundus photography in diabetes mellitus 

The use of color fundus photography has been widely implemented in the diagnosis and 

documentation of diabetic retinal changes. The hallmark ETDRS study used standard 

sets of retinal images for the classification of DR and DME, which then led to the 

development of more applicable grading scales for clinical use [37]. Later, color fundus 

photography was implemented for the screening of DR and DME with great success 

through the use of human graders. Initially, multiple images per eye were required for 

screening, while the use of non-mydriatic, wide-field imaging has helped to simplify 

this need [38-40]. 

Nowadays, several different settings of non-mydriatic fundus cameras are commercially 

available in easy-to-transport and easy-to-use designs. There is neither any special 

training necessary for the medical personnel, or a need for the patients to undertake an 

inconvenient and costly imaging session in order to be screened for DR and DME. 

Additional advantages provided by digital technology include significantly easier 

storage and delivery of the fundus photos to the reading centers, while on the other hand 

one can benefit from the advantages of image processing and artificial intelligence (AI), 

making the method a suitable tool for large-volume DR screening. 

Telemedical screening programs, such as those implemented in the United Kingdom or 

in Nordic countries, can enable the early detection and treatment of DR or even macular 

edema, and thus substantially reduce the incidence of DR-related vision loss [41]. 

1.3.2. Optical coherence tomography in diabetes mellitus  

OCT enables a micrometer-resolution, three-dimensional, non-invasive imaging of the 

retina in real-time and has now become the most widely used imaging diagnostic tool in 

medicine. OCT plays a crucial role in the diagnosis and management of DME by 
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providing multiple biomarkers beyond thickness measurements [42]. Thanks to OCT 

image processing through the segmentation of B-Scans, near-histological changes can 

be detected even in the early stages of DM [43, 44]. With quantitative OCT-analysis, 

objective structural monitoring can even give valuable information about the disease 

course and treatment efficacy, which in turn may support therapeutic decisions [45, 46]. 

Based on differences in the optical density and reflectivity extracted from OCT scans, 

the image processing algorithms are able to separate the different layers of the retina. 

This can help not only in the measurement of retinal thickness, but also to more 

precisely localize retinal changes and to better understand the underlying 

pathophysiology [47, 48]. 

The recent introduction of OCT angiography in the daily routine enables the 

quantitative analysis of retinal microvasculature that can also serve as predictive factor 

in the prognosis of DME and even in the staging of DR [49].  

1.3.3. The automation of retinal image analysis using artificial intelligence 

Lately, computer assisted image analysis has rapidly gained importance in the 

processing of the increasingly complex medical imaging data. Machine Learning (ML) 

has become an important healthcare tool because of the fast AI evolution in various 

fields of medicine (e.g., ophthalmology, radiology). Since its introduction in the 

beginning of the second half of the last century, smaller subsets of AI have been 

invented and implemented continuously: machine learning, neural networks, and deep 

learning. It is important to understand this terminology in order to comprehend the 

various developments in the field. Artificial intelligence is a science of any techniques 

to build intelligent programs and machines that can solve problems creatively, as 

humans do. The field of Machine Learning is a subset of AI algorithms, allowing 

computers to learn automatically from experience without being explicitly programmed 

to do so [50]. Algorithms that are inspired by the neural structure of the human brain are 

referred to as artificial neural networks (ANN), whereas algorithms that can combine 

these neural structures in several layers similarly to the central nervous system are 

called deep learning (DL) algorithms. (Figure 1) gives a graphical explanation of these 

terms and their relationship with each other. 
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ML has already led to several clinically relevant applications in the field of 

ophthalmology, among others automated diagnosis, image segmentation, disease 

prognosis, and disease prediction [36, 51-55]. ML is particularly useful in 

ophthalmology due to the vast amount of ocular imaging data available in everyday 

clinical practice including optical coherence tomography, anterior segment 

photography, corneal topography and fundus imaging which are of utmost importance 

in the diagnosis and treatment of conditions like glaucoma, DR, papilledema, age-

related macular degeneration and cataract [34, 51]. 

 

Figure 1. Explanation of the different terms used in the field of artificial 

intelligence. The detailed explanation can be found in the text. 

Several computerized, semi-automated techniques for analysis have been developed for 

cost efficiency, and to reduce expert workload [56], and the detection of different retinal 

diseases is now increasingly aided by deep learning (DL) algorithms (e.g., the 

Bhaktapur Retina Study, a recent study by the Center for Eye Research Australia etc.) 

[57]. 

High-quality data play a pivotal part in training new AI/ML models, as they need 

datasets that are attentively designed and annotated. Furthermore, it is important that 

such databases contain information on patient characteristics, such as sociodemographic 

information, the inclusion and exclusion criteria, the labeling process, along with 

information the labelers themselves [58, 59]. Crowdsourcing has become a new option 
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for the generation of ground truth data; here, volunteers do the analysis online with or 

without a charge. Brady et al. recounted using Mechanical Amazon Turk to be an 

inexpensive and effective method for the rapid identification of ocular diseases like DR 

or follicular trachoma on photographs [60, 61].  

Due to the high amount of imaging data available, multiple uses of AI-driven systems 

have emerged in the field of Ophthalmology and are developing rapidly. As a result, 

automated systems using autonomous AI have been recently approved by the FDA for 

the telemedical screening of the presence/absence of any DR without the need for 

involving specifically trained personnel [62, 63]. 
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2. OBJECTIVES  

In light of the above, we had the following aims in our studies. 

1. The use of artificial neural networks to differentiate between healthy and diabetic 

eyes by structural features of intraretinal layers obtained by OCT imaging  

With respect to the underlying relationships between the different structural and optical 

features of retinal tissue, it could be possible that OCT images could provide more 

information on the basis of the integration of optical and structural properties. Thus, the 

images could be used as superior input data to improve diagnostic performance for 

classification methods. For this reason, we aimed to assess the possibility of training an 

artificial neural network to distinguish between healthy eyes and eyes of diabetes 

patients with and without mild diabetic retinopathy using structural data of intraretinal 

layers obtained by OCT. 

2. Detailed histological evaluation of ganglion cells in the retina of ZDF rats 

Due to the potential importance of retinal ganglion cells (RGC) in the pathophysiology 

of early diabetic retinal changes, the contradictory results in other experimental animals 

[64-66], and the uncertainty of analyzing RGC loss in our former investigations based 

on the relatively small number of sections, we aimed for a more elaborate histological 

RGC assessment in the same T2DM model, using three different pan-ganglionic 

markers. 

3. The assessment of the reliability of image quality labeling by graders having different 

backgrounds 

It is of pivotal role to have a satisfactory amount of data to train and validate ML for 

which correctly labeled ground truth data are required. To model the democratization of 

the labeling of retinal images, we evaluated the performance of graders with or without 

medical background in a pilot study for retinal fundus image quality labeling with the 

help of a special grading tool. It was assessed whether more detailed labeling leads to 

better reproducibility of results; also, we evaluated the ability to identify poor-quality 

images. Lastly, we asked graders for feedback so that we could assess their impressions. 
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3. METHODS  

3.1. Training of a Bayesian artificial neural network with OCT images 

3.1.1. Patients 

One hundred twenty participants (190 eyes) were invited between October 2007 and 

December 2010 at the Department of Ophthalmology, Semmelweis University, 

Budapest, Hungary. All Type 1 diabetic patients were invited who had been referred to 

the comprehensive ophthalmology clinic, and had diabetic retinopathy up to ETDRS 

level 35 but no macular edema; diabetic patients without retinopathy were also enrolled. 

Patients over 18 could participate, exclusively, and each subject was asked to sign a 

written informed consent. Diabetic patients with PDR, clinically significant macular 

edema, or with anatomic abnormalities that affected the architecture of the macula, e.g., 

glaucoma, epiretinal membranes, or vitreoretinal traction, were excluded from the study.  

Healthy controls could be included in the study if they had a best-corrected visual acuity 

of 20/25 or better, had no present ocular or systematic disease, and a normal-looking 

macula on contact lens biomicroscopy. Patients who had any medical condition possibly 

affecting visual function different from T1DM, or medicated treatments that might 

affect the thickness of the retina, were not included in the study. Furthermore, we 

excluded individuals from the study who had recent cataract surgery, or had undergone 

intraocular surgery, as well as patients whose blood sugar levels were unstable, or who 

had started insulin pump therapy recently. 

Thirty-five eyes belonging to 21 study subjects were excluded due to OCT scans of low 

quality (1) or other diseases that were included in the exclusion criteria (amblyopic (3), 

chorioretinitis (2), moderate DR (6), no DR (2), epiretinal membrane (1), panretinal 

photocoagulation (5), pars plana vitrectomy & panretinal photocoagulation (1), pigment 

epithelial detachment & central serous chorioretinopathy (1), T2DM (8), optic nerve 

disease (3), and severe DR (2)). We analyzed the remaining 155 eyes belonging to 99 

participants, and received 74 healthy eyes in total (34 ± 12 yrs., 52 females, 22 males), 

38 eyes with T1DM with no retinopathy (35 ± 10 yrs., 20 females, 18 males), and 43 

eyes with mild diabetic retinopathy (MDR, 43 ± 17 yrs., 21 females, 22 males) on 

biomicroscopy, which we incorporated in the study (Table 1). 
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The research was conducted in accordance with the tenets of the declaration of Helsinki. 

We obtained Institutional Review Board approval at Semmelweis University as well as 

at the Miller School of Medicine, University of Miami.  

Table 1.  Characteristics of the study population 

Characteristic Controls DM MDR 

Number of Participants 41 29 29 

Number of Eyes 74 38 43 

Age (years, mean ± SD) 34 ± 12 35 ± 10 43 ± 17 

Female, N (% total eyes) 52 (70%) 20 (53%) 21 (49%) 

Race (% Caucasian) 100 100 91 

Hemoglobin A1c level (%) - 7.20 ± 0.90 8.51 ± 1.76 

DM duration (years, mean ± SD) - 13 ± 5 22 ± 10 

IOP (mmHg, mean ± SD) - 15.74 ± 1.77 15.09 ± 1.56 

BCVA 1.00 ± 0.00 1.00 ± 0.00 0.97 ± 0.06 

Total macular thickness 324.36 ± 10.27 316.72 ± 21.56 297.40 ± 21.79 

Abbreviations: SD = standard deviation; N = number; DM: diabetic eye without retinopathy; MDR: 

diabetic eye with mild diabetic retinopathy; IOP = intraocular pressure; BCVA = best corrected visual 

acuity (67). 

3.1.2. Clinical Examination 

Enrolled subjects were required to undergo a single comprehensive eye examination 

which included intraocular pressure (with the Goldmann tonometer) and slit-lamp 

examination. We performed OCT examination in healthy as well as diabetic eyes with 

retinopathy and without. An experienced grader obtained and classified fundus images 

in accordance with the criteria of the ETDRS protocol [68]. Experienced, board-

certified graders performed the classification of images unaware of clinical data or the 

OCT findings. Additionally, a blood test measuring hemoglobin A1c level was carried 

out at this visit in the case of diabetic patients who had no past glycemic control. After 

the first visit or during the time of the research no additional tests had to be done. 

3.1.3. OCT system and examination protocol  
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The OCT system (Stratus OCT, Carl Zeiss Meditec, Dublin, California) that we applied 

in this research uses a broadband light source with an output power of 1 mW at the 

central wavelength of 820 nm with a 25 nm bandwidth. The light source provides 12μm 

axial resolution in free space, which determines the system’s imaging axial resolution. 

A cross-sectional image is obtained by combining axial reflectance while the sample is 

being laterally scanned. 

All included Stratus OCT scans were gained with the help of the macular thickness map 

protocol, which comprises six radial scan lines that are centered on the fovea; every one 

of them has a 6 mm transverse length. So as to get the best image quality, optimization 

and focusing settings were controlled. The scans were only accepted when the signal 

strength was over 6 (preferably 9–10). We repeated scans with foveal decentration. For 

each case, macular radial line scans of the retina were recorded on disc with the help of 

the export feature of the Stratus OCT device and were analyzed via custom-built 

software [69].  

3.1.4. OCT image segmentation and data extraction (OCTRIMA) 

In our examinations, the OCT scans were processed with “OCT Retinal Image 

Analysis” (OCTRIMA), a Matlab interface image analysis program developed by 

Cabrera et Al. [69, 70] which also enables the measurement of the thickness, 

reflectivity, and optical density of the retinal layers (Figure 2). 

 

Figure 2.  Macular image segmentation using OCTRIMA. The image of a healthy macula 

scanned by Stratus OCT and processed with OCTRIMA. Abbreviations: Ch, choroid; GCL+IPL, 

ganglion cell layer and inner plexiform layer complex; INL, inner nuclear layer; ONL+IS, combined 

outer nuclear layer and inner segment of photoreceptors; OS, outer segment of photoreceptors; OPL, 

outer plexiform layer; RNFL, retinal nerve fiber layer; RPE, retinal pigment epithelial layer; V, vitreous 

[70].  
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As it is the case in some Fourier-domain OCT systems, OCTRIMA too calculates the 

total thickness of the retina between the inner boundary of the second hyperreflective 

band and the ILM, which has been attributed to the OS/RPE junction in accordance with 

histological and previous OCT studies [71, 72].  Six cellular layers of the retina were 

segmented on OCT images on the basis of their optical densities: the RNFL, GCL + IPL 

complex, the INL, the OPL, the ONL + IS, OS and the RPE (Figure 2) [69]. 

In addition to thickness measurements, structural and optical measurements were 

obtained with the help of features that were locally measured for each intraretinal layer. 

Image processing and the calculation of diagnostic parameters were programmed in 

Matlab 7.0.  We divided the macular region into distinct regions (Figure 3). The 

foveola area is the central disc with a 0.35 mm diameter. The rest of the rings are the 

fovea, parafoveal, and perifoveal areas; their diameters are 1.85, 2.85, and 5.85 mm, 

respectively. As an area that is 1 mm in diameter is too extended for the foveola region 

thickness, which is merely about 0.35 mm in diameter, the custom-built map makes it 

possible to collect more precise information around the foveola region in comparison 

with the ETDRS thickness map. Furthermore, in this method, no interpolation is used.  

 

Figure 3.  Custom-built method showing macular sectors. A) Fundus image of a healthy 

eye showing the Stratus OCT’s radial lines protocol. B) Regions shown are: foveola (a) with a diameter 

of 0.35 mm, foveal region (b) with a diameter of 1.85 mm, parafoveal region (c) with a diameter of 2.85 

mm and perifoveal (d) region with a diameter of 5.85 mm (67). 

In addition to measurements of thickness, we extracted optical and structural properties 

from OCT-based images and used them to classify healthy and diabetic eyes showing 



20 

 

and not showing retinopathy. The parameters that could best distinguish between 

diabetic eyes and healthy ones, as previous research revealed in statistical and receiver 

operating characteristic analyses [73], were assessed and validated by artificial neural 

networks using a Bayesian radial basis function. 

3.1.5. Training of a Bayesian basis function network and model testing 

 Our ANN classifier was composed of an ensemble of two input neurons with a 

Bayesian radial basis function and one output neuron.  As a consequence, we have two 

features for each candidate intraretinal layer (input parameters) which are put into the 

ANN so as to estimate one output feature in each of the classification tests. We 

implemented the ANNs in Matlab 7.0 (MathWorks, Natick, Massachusetts) with the 

help of Markov chain Monte Carlo algorithms.  

To distinguish between diabetic eyes and healthy ones we performed various training 

and classification tasks. In particular, we chose structural parameters of intraretinal 

layers as the input and output features for the Bayesian radial basis function networks 

which would distinguish between MDR, DM, and healthy eyes. As it is indicated in 

earlier research [74], thickness measurement (TH) and fractal dimension (FD) showed 

superiority over other parameters in discriminating between MDR, healthy, and DM 

eyes. Consequently, we used these two optimum parameters for the input and output 

values that are needed in the training task of Bayesian radial basis function networks. 

Next, we applied trained Bayesian radial basis function networks for the classification 

of the combined test subjects (eliminating the training subjects). In order to examine the 

possible relationships between diseases of the retina in diabetic individuals and target 

features, the training task was first performed with the help of a part of the data and 

various target features. Next, we carried out classification tasks to get the optimum 

arrangement over the allowed models’ set. In addition, we used the performance of the 

classification test to assess the sizing of training dataset in the development of the ANN 

scheme. Consequently, we explored various sizes of the training set and compared the 

results we obtained.  

We first examined the possible relationships between the alterations of the retina in 

diabetic individuals and the target features. Specifically, we randomly selected 20 

healthy eyes, out of 74 eyes in the control group, in order to train the Bayesian radial 
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basis function network (Test 1). We used different target features which had been 

extracted from all of the intraretinal layers for the training of the Bayesian radial basis 

function network and for the classification of 43 MDR eyes using the rest of the healthy 

eyes (54 eyes). In this test, the feasibility of the method was evaluated and we 

determined the best intraretinal layer parameters that could be predicted and used to 

distinguish between MDR eyes and healthy ones. 

Secondly, model testing of the earlier trial was carried out by examining various sizes of 

the training data subset (Test 2). For this, we used subsets with 20, 30, and 40 healthy 

eyes to train the Bayesian ANN, and we compared the results. 

Next, we attempted to distinguish between DM and MDR eyes (Test 3). In accordance 

with the earlier test, we randomly selected 20 MDR eyes from the 43 MDR eyes for the 

training of the Bayesian radial basis function network with the TH and FD as the input 

and target features. After that, we used the trained Bayesian radial basis function 

network for the classification of the remaining 23 MDR eyes and 38 DM eyes. 

The performance of the proposed methodology was assessed with the help of sensitivity 

and specificity as figures of merit. We calculated the results for true positive (TP), false 

negative (FN), true negative (TN), false positive (FP), and positive predictive value 

(PPV) to evaluate the classification performance of the ANN and the diagnostic 

capability of the incorporated OCT parameters. 

3.2. Histological analysis 

3.2.1. Animal handling 

All procedures conducted in our research were carried out in accordance with the 

statement of the Association for Research in Vision and Ophthalmology for the Use of 

Animals in Ophthalmic and Vision Research. Our research was accepted by the Ethics 

Committee for Animal Experimentation of Semmelweis University and by the Animal 

Health and Animal Welfare Directorate of the National Food Chain Safety Office of the 

Hungarian State (number of approval: 22.1/1162/3/2010). 

Our trials were performed on ZDF inbred rats, which were provided by Charles River 

Laboratories (Sulzfeld, Germany). A part of the results coming from the same trial have 

already been published [66]. Six-week-old ZDF rats (n = 8) and ZDF lean controls (n = 

8) arrived to our laboratory; they were kept in a room with a constant temperature of22 
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± 2 °C, and were subjected to 12–12 h alternating light-dark cycles. Water and food 

were provided ad libitum. Their body weights as well as blood glucose levels (Accu-

Chek ® Sensor, Roche Inc., Mannheim, Germany) were measured at regular intervals 

during the whole period of observation. The specimens were euthanized at 32 weeks of 

age, after they had undergone a range of invasive hemodynamic measurements which 

had been performed in general anesthesia [75]. In order to remove erythrocytes from 

tissues, we perfused in vivo 40 ml of oxygenated Ringer solution (37°C, 8 ml/min); 

after this, the specimens were decapitated. The removed eyes were then placed in 

fixative within 10 minutes of euthanasia [76].  

3.2.2. Tissue preparation and immunohistochemistry 

We oriented, removed, and cut the eyes at the ora serrata. We separated the vitreous 

body, lens and cornea, and the remaining eyecup was fixated in 4% paraformaldehyde 

diluted in 0.1 M phosphate buffer (PB, pH 7.4) for a period of two hours at room 

temperature. After the fixation procedure, we rinsed the eyecups multiple times with 0.1 

M PB. We applied cryoprotection (in 30% sucrose diluted in 0.1MPB) overnight at 4 

°C; next, the eyecups were immersed in tissue-embedding medium (Shandon 

Cryomatrix, Thermo Scientific, UK). 20-μm-thick cryosections were cut vertically and 

subsequently stored at −20 °C until use. 

Before immunocytochemistry, we blocked all sections in a solution of 0.4 % Triton-

X100 (Sigma-Aldrich, Budapest, Hungary) containing 1 % bovine serum albumin in 0.1 

M phosphate buffered saline (PBS, pH 7.44). All the primary antibodies that were used 

were diluted in the same solution, too. Sections were co-labeled using three different 

markers (Brn-3a, NeuN, and RBPMS), which have been proved to recognize most 

ganglion cells [77-80]. Details in connection with the primary antibodies we used are 

provided in Table 2. We used three antibodies for 12 hours consecutively with 

continuous agitation; rinsing steps were repeated in between (PBS, 10 × 10 minutes). 

Next, the bound primary antibodies were visualized with the help of species-specific 

fluorescent dyes (Alexa 488 and Alexa 555 conjugates, 1:200, Thermo Fischer 

Scientific, Waltham, MA) or as for the RBPMS antibodies, biotinylated donkey anti-

rabbit (A16039, Thermo Fischer Scientific, Waltham, MA) and streptavidin conjugated 

Alexa 633 marker. Species-specific Alexa-conjugated secondary antibodies were used 
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for the detection of the bound antisera at room temperature for 2 hours (Alexa-488 or 

Alexa-594 conjugates, 1:200, Life Technologies, Carlsbad, CA, USA). We used 

samples without adding the primary antibodies as negative controls. The nuclei of cells 

were stained with 4,6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich Kft, Budapest, 

Hungary). 

Table 2. Primary antibodies used in our experiments (76). 

Antibodies Source Dilution Host and 

type 

Labelling 

pattern 

Reference 

Brn-3a 

#SC-31984 

Santa Cruz Biotechnology 

Inc., Heidelberg, Germany 

1:500 goat 

polyclonal 

retinal ganglion 

cells 

(77) 

NeuN 

Clone:A60 

#MAB377 

Merck Kft., Budapest, 

Hungary 

1:200 mouse 

monoclonal 

most retinal 

ganglion cells, 

some amacrine 

cells, displaced 

amacrine cells 

(81) 

RNA 

Binding 

Protein 

with 

Multiple 

Splicing 

(RBPMS) 

Generous donation of 

Natik Piri, Jules Stein Eye 

Institute, UCLA, CA, USA 

1:500 rabbit 

polyclonal 

retinal ganglion 

cells 

(79) 

Additionally, to determine the count of apoptotic cells, we used terminal 

deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL, In 

situ Cell Death Detection Kit, Fluorescein; Roche Diagnostics, Mannheim, Germany) 

assay. As negative controls, sections incubated without the terminal transferase enzyme 

were used; positive control sections were pre-incubated with DNAse I before the 

TUNEL reaction was performed. We counted apoptotic cells in the GCL on complete 

vertical sections of the retina with the help of terminal deoxynucleotidyl transferase 

deoxyuridine triphosphate nick end labeling (TUNEL, In situ Cell Death Detection Kit, 

Fluorescein; Roche Diagnostics, Mannheim, Germany) following the manufacturer’s 

recommendations. 

In our research, we used only a few sections to examine the staining features of the 

antibodies and to evaluate the number of TUNEL positive elements in the GCL. In the 
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whole of the study, we used only complete vertical sections prepared through the optic 

nerve of diabetic (n = 4) as well as lean (n = 4) animals, with 4 sections of each 

specimen for the triple ganglion cell immunohistochemistry as well as for the TUNEL 

reaction. The majority of the antibodies we used had been previously examined and 

validated in murine retinas by our research group [19, 65, 82]. Cell counting was carried 

out on 20 µm thick vertical sections (n = 4 sections from each specimen) obtained from 

diabetic (n = 4) as well as lean (n = 4) rats. For the purpose of cell counting, we only 

selected the sections that were crossing the optic nerve head. In the case of ganglion 

cells (Brn-3a, TUNEL) we counted the total number of the stained cells in each section. 

3.2.3. Imaging and statistical analysis 

To test triple RGC labeling and for the purpose of quantifying TUNEL reactions, we 

used a Zeiss LSM 780 Confocal System coupled to a Zeiss Axio Imager upright 

microsope (Carl Zeiss Meditec AG, Oberkochen, Germany) with a 40x objective. 

Our results were analyzed by two-group exact randomization test and expressed as 

mean ± SD (standard deviation). Also, normal distribution was examined using the 

Shapiro–Wilks method.  

3.3. Fundus image quality labeling and grader performance analysis 

3.3.1. Data collection 

We chose color fundus photographs from 18,145 color fundus images in total, which 

were meant to be used for the prospective training of an AI-based algorithm for the 

purpose of image quality grading. The color fundus images were selected from three 

datasets: the dataset by Tao et al. [83], the EyePacs dataset [84], and a dataset 

containing 984 color fundus images, which we had obtained from the Bascom Palmer 

Eye Institute. These images were acquired with different fundus cameras. 

The study was carried out in accordance with the guidelines of the Declaration of 

Helsinki; for the study, ethics approval was obtained from the ethics committee of the 

University of Miami. The images were gathered with the consent of the participants and 

were de-identified in accordance with local regulations (e.g., the Health Insurance 

Portability and Accountability Act). 
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3.3.2. Image grading 

We developed a system for image classification on the basis of previous research by 

Zapata et al., Fleming et al., and Gulshan et al., as well as on the EyePACS image 

quality grading system [84-87]. In summary, we used four criteria for the definition of 

image quality: focus, illumination, image field definition and artifacts. On the basis of 

these criteria, we created four groups: excellent (E, all criteria sufficiently met), good 

(G, maximum 2 criteria not met), adequate (A, 3-4 criteria not met, but the retina can be 

recognized) and insufficient for grading (I, where no retina can be detected on over 50% 

of the image; no third-generation branches of the vasculature of the retina can be 

detected one disc diameter from the optic nerve head and the fovea). For each of the 

image quality groups, a representative image along with its labels was shown on Figure 

4.  

 

Figure 4. Representative color fundus images from the Excellent (A), Good (B), 

Adequate (C) and Insufficient for grading (D) categories. Image 1B meets criteria for 

“Good” because of the image field definition (decentered image) and peripheral artifacts; 1C is identified 

as Adequate because of its poor illumination, off focus, and insufficient image field definition (the image 

does not include enough of the retina temporal to the fovea). Image 1D qualifies as Insufficient because it 

does not show the optic nerve head or the third-generation vessel branches around the macula; this makes 

it  impossible to identify the retinal changes that are characteristic of diabetic retinopathy [88]. 
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Two hundred images were randomly selected out of a set of 18,145 expert-labeled 

images; from each group, fifty images were chosen. The images had been labeled earlier 

regarding the quality of the images by two experts, and were used as the basis for the 

analysis on the ground of the standards defined above. The experts included a board-

certified ophthalmologist (KLLF) who had experience retinal imaging, and a board-

certified senior retina specialist (GMS) with experience in retinal image grading in the 

field of the telemedical screening of diabetic retinopathy. When there was disagreement, 

GMS’s decision was used as a reference. 

We developed a tkinter-based graphical user interface (GUI) tool in Python 

programming language, gaining ideas from the number of open-source tools available 

(https://docs.python.org/3/library/tkinter.html, last accessed 11 July, 2021), with the 

main intention to develop a simple, on-prem image annotation tool.  The tool also 

allowed for the measuring of the time of the grading in the case of each image shown in 

900x1000 pixel resolution; zooming was not possible. 

In this study, all the images were assessed by 8 volunteers, 4 of them with a medical 

background (3 ophthalmologists and 1 optometrist, 26-45 years of age – group M) and 4 

without a medical background (2 computer scientists, 1 lawyer, and 1 teacher, 26-60 

years of age – group NM). Every volunteer had computer skills of at least intermediate 

level computer skills working with a PC on a daily basis. Before the grading took place, 

the participants were given a tutorial with an oral explanation detailing the task and a 

PDF document which described the anatomy of the retina, along with the grading 

system using sample images with examples of various artifacts, and a description of the 

GUI. All the volunteers were allowed to use the supporting PDF document while 

grading the images. The fundus photographs were shown to the graders in the same, 

random order. We recorded the time that was necessary for the grading in the case of 

each volunteer. 

To increase grading objectivity, our volunteers were requested to run a second round of 

grading with the same tool, but this time using 14 predefined labels (Table 3). With 

these labels we generated the aforementioned four image quality groups from excellent 

to insufficient. Written feedback was collected from the graders upon completion of the 

second round. 
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Table 3. Grading labels used for the objective grading round. 

Grading categories Labels used in the objective grading round 

Focus Optimal / Unsharp 

Illumination Optimal / Too dark / Too light 

Image field definition Optimal / Missing Macula / Missing Optic disc 

Artefacts No artefacts / Small pupil / Dust spots / 

Lash artefacts / Camera artefacts / Arc defects 

To reduce the inherent subjectivity of our study, our volunteers were asked to carry out a second round of 

grading; predefined labels assigned to each category were used. In the second round, the four categories were 

compiled in a similar way to the first round of grading [88]. 

3.3.3. Statistical analysis 

For the comparison of the times necessary for the grading in the four categories, the 

medians and interquartile range (IQR)were used because of the limited number of 

graders in both the M and NM groups. 

The inter-rater agreement was assessed by Cohen’s weighted kappa in both the original 

and the more objective grading rounds using the 4 categories of our original grading 

system (E/G/A/I), as well as after merging Excellent and Good categories [(E+G)/A/I]. 

In order to evaluate the agreement in choosing images of poor quality, in both rounds, 

we calculated Cohen’s weighted kappa with merged groups E and G vs. A and I. The 

kappa values are displayed as medians (IQR) altogether as well as in the groups with 

different previous medical training (M, NM). The statistical analysis was performed 

with SPSS 28 (SPSS Inc, Chicago, IL).  
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4. RESULTS 

4.1. The evaluation of the potential of structural features of intraretinal layers extracted 

from optical coherence tomography images for the training of artificial neural networks 

to differentiate between healthy and diabetic eyes 

We analyzed 930 OCT images which we had acquired from 155 eligible eyes belonging 

to 99 participants. The clinical and demographic backgrounds of the participants of the 

study are described in Table 1. 

4.1.1. Classification testing using different input parameters to identify healthy eyes – 

Test 1  

In this classification test, we examined the probability of the subject’s eye being healthy 

(diagnostic condition). Table 4 indicates displays the specificity, sensitivity and 

predictive values which were obtained when training the Bayesian radial basis function 

network with the help of the thickness (TH) and fractal dimension (FD). 

Table 4. Classification performance results obtained in Test 1 

TH vs. FD RNFL 

(eye/scans) 

GCL + IPL 

(eye/scans) 

INL 

(eye/scans) 

OPL 

(eye/scans) 

ONL + IS 

(eye/scans) 

OS 

(eye/scans) 

RPE 

(eye/scans) 

TP 48/288 49/294 48/288 48/288 48/288 50/300 51/306 

FN 6/36 5/30 6/36 6/36 6/36 4/24 3/18 

TN 10/60 35/210 23/138 36/216 10/60 9/54 11/66 

FP 33/198 8/48 20/120 7/42 33/198 34/204 32/192 

PPV 0.59 0.86 * 0.71 0.87 * 0.59 0.60 0.61 

Sensitivity 0.89 0.91* 0.89 0.89* 0.89 0.93 0.94 

Specificity 0.23 0.81* 0.53 0.84* 0.23 0.21 0.26 

* denotes the intraretinal layer for which the sensitivity, specificity and PPV are greater than 80%. 

Sensitivity, specificity, predictive values (TP, FN, TN, FP) and positive predictive values (PPV) obtained 

when training the Bayesian radial basis function network using the thickness (TH) and fractal dimension 

(FD) as the input and target features of the given retinal layers, respectively (67). 

According to our results, for the healthy eyes the TP test was in the 48–51 range when 

we mixed 54 healthy eyes with 43 diabetic eyes showing mild retinopathy (MDR). In 

particular, TP showed high values for OCT parameters of the GCL + IPL complex, OS, 
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and RPE (49, 50 and 51, respectively). The positive predictive values indicate that the 

GCL + IPL complex and OPL parameters are highly sensitive (91% and 89%, 

respectively) in determining that the subject’s eye was indeed healthy. Furthermore, 

high values for sensitivity, specificity, and PPV (≥0.80) were achieved only for the GCL 

+ IPL complex and OPL parameters. Consequently, it is highly probable (≥80%) that 

the subject will have a healthy GCL + IPL complex and OPL structure. 

4.1.2. Classification testing using different sizes of training datasets – Test 2  

During the training of the Bayesian radial basis function network using the thickness 

and fractal dimension as features, we obtained results which showed that the FN and FP 

remained at a given sensitivity of ≥ 80% for the parameters of the GCL + IPL complex 

irrespective of the size of the subset of healthy eyes that were used during the training; 

FN values remaining for the OPL were found to have slightly decreased with the larger 

number of healthy eyes used in the training of the ANN. In addition, the TN value for 

the GCL + IPL complex has not changed. High sensitivity and specificity (≥0.80) with 

relatively high PPV were indicated both for the GCL + IPL complex and OPL. PPV 

presented with a slightly declining trend for the GCL + IPL complex and OPL with the 

greater number of the training subset of healthy eyes, probable explanation would be the 

consequent reduction in the number of healthy eyes in the testing subset. Table 5 

displays the results after using different sizes of training subsets (20, 30, and 40 eyes). 

Table 5. Model testing results after changing the size of the training data set 

Size of the 

training dataset 

20 healthy eyes 30 healthy eyes 40 healthy eyes 

TH vs. FD GCL + IPL 

(eye/scans) 

OPL 

(eye/scans) 

GCL + IPL 

(eye/scans) 

OPL 

(eye/scans) 

GCL + IPL 

(eye/scans) 

OPL 

(eye/scans) 

TP 49/294 48/288 39/234 39/234 29/174 29/174 

FN 5/30 6/36 5/30 5/30 5/30 5/30 

TN 35/210 36/216 35/210 36/216 35/210 36/216 

FP 8/48 7/42 8/48 7/42 8/48 7/42 

PPV 0.86 0.87 0.83 0.85 0.78 0.81 

Sensitivity 0.91 0.89 0.89 0.89 0.85 0.85 

Specificity 0.81 0.84 0.81 0.84 0.81 0.84 
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Results of sensitivity, specificity, accuracy, predictive values, and positive predictive values gained for 

the GCL + IPL complex and OPL when training the Bayesian radial base function network with 20, 30, 

and 40 healthy eyes with the thickness (TH) and fractal dimension (FD) as the input and target features, 

respectively [67]. 

4.1.3. Classification testing using different input parameters to identify MDR eyes – 

Test 3 

The results that were observed in Test 3 after training the Bayesian radial basis function 

network with TH and FD as the input and target features are displayed in Table 6. This 

classification test, we investigated the likelihood of diabetic eyes having MDR 

(diagnostic condition). In this test we obtained high TP values for the features of the 

RNFL, GCL + IPL complex, OS and RPE. In addition, RNFL, OS, and RPE presented 

with a sensitivity, specificity, and PPV of at least 70%. Surprisingly, the features of 

GCL + IPL complex did only present a PPV of 60%. 

Table 6. Classification performance results obtained in Test 3 

TH vs. FD RNFL 

(eye/scans) 

GCL + IPL. 

(eye/scans) 

INL 

(eye/scans) 

OPL 

(eye/scans) 

ONL + IS 

(eye/scans) 

OS 

(eye/scans) 

RPE 

(eye/scans) 

TP 18/108 18/108 15/90 4/24 10/60 18/108 20/120 

FN 5/30 5/30 8/48 19/114 13/78 5/30 3/18 

TN 30/180 26/156 32/192 28/168 26/162 31/186 33/198 

FP 8/48 12/72 6/36 10/60 12/72 7/42 5/30 

PPV 0.69 0.60 0.71 0.29 0.45 0.72 0.80* 

Sensitivity 0.78 0.78 0.65 0.17 0.43 0.78 0.87* 

Specificity 0.79 0.68 0.84 0.74 0.68 0.82 0.87* 

* denotes the intraretinal layer for which the sensitivity, specificity, and PPV are greater than 80%. 

Sensitivity, specificity, predictive values (TP, FN, TN, FP), and positive predictive values (PPV) obtained 

when training the Bayesian radial basis function network using the thickness (TH) and fractal dimension 

(FD) as the input and target features, respectively [67]. 

Overall, the results show an approximately 90% effectiveness of the classifier (PPV 

values in Table 5) in providing an exact prediction of the unknown class (healthy eyes) 

when distinguishing between healthy eyes and MDR eyes based on the GCL + IPL 

complex’ and OPL’s features in the diagnostic test (Test 1). Nevertheless, the classifier 

could not effectively (~44.5%) make a correct prediction when distinguishing between 
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DM and MDR eyes using the features of the same intraretinal layers (i.e., GCL + IPL 

complex and OPL in Test 3 – Table 6). It proved to be more effective (PPV ~ 74%) in 

the prediction of the unknown class (MDR eyes) when DM and MDR eyes were 

compared with the help of the features of the RNFL, OS, and RPE (Test 3). Table 7 

displays the percentage of correct classifications for the GCL + IPL complex and OPL 

features in tests 1 and 3. 

Table 7. Percentage of correct classifications as a function of eyes used in training 

and testing in tests 1 and 3 (67). 

Intraretinal 

Layer 

Number of eyes used for 

training 

Number of eyes used 

for testing 

Percentage of correct 

classifications (%) 

GC + IPL Test 1 20 Healthy 97 91 

Test 3 20 MDR 61 42 

OPL Test 1 20 Healthy 97 89 

Test 3 20 MDR 61 47 

4.2. Detailed histological evaluation of ganglion cells in the retina of Zucker Diabetic 

Fatty rats 

4.2.1. Triple retinal ganglion cell labeling on cryosections  

In the study, we used three antibodies for the labeling of the majority of RGCs (Figure 

2). In accordance with the literature, Brn-3a presented a purely nuclear localization [79]; 

in addition to labeling the nuclei, NeuN also stained the cytoplasm [89]; and RBPMS 

positivity was most distinctly observed in the cytoplasm. Most labeled cells in the GCL 

were stained by all of the antibodies; cells positive for either two or only one of the 

antibodies were only occasionally found. Additionally to the staining pattern in the 

GCL, NeuN also identified a numerous smaller cells in the inner nuclear layer (INL – in 

all likelihood amacrine cells – see arrows in Figure 2b,f) that did not co-label with the 

other two antibodies. 

Comparing the control specimens with the diabetic ones, we found no major difference 

in the intensity of the staining or in the localization or number of the labeled elements 

with any one of the antibodies that were used. We did, however, detect a notable 

variation between different retinal regions, mainly in the central retina, bordering the 

optic nerve head. In some parts, no labeled cells were detected, whereas a large group of 
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cells was detected only 20–50 μm further away. This phenomenon was evidently 

detectable in control as well as in diabetic specimens. 

 

Figure 5. Triple labeling of retinal ganglion cells in retinal cryosections. 

Representative images of retinal sections of control lean (a–d) and diabetic (e–h) specimens labeled by 

three different markers Brn-3a (first column - in red), NeuN (second column - in green), and RBPMS 

(third column – in blue). Merged images are shown in the right column. The vast majority of the RGCs 

are labeled by all three markers. NeuN also labels a population of cells – most probably amacrine cells – 

in the INL (arrows on b,f). DAPI is used as a nuclear staining on the sections (in white). ONL: outer 

nuclear layer, INL: inner nuclear layer, GCL: ganglion cell layer. Bar: 20 μm. [56] 

4.2.2. Apoptosis among ganglion cells 

In the GCL in each vertical section the mean number of TUNEL positive cells was 1.38 

± 1.54 in control vs. 1.26 ± 1.24 in diabetic specimens. We did not find any significant 

difference (p = 0.73). 

4.3. The assessment of the reliability of image quality labeling among graders with 

different backgrounds 

4.3.1. Time necessary for the grading task 

For the labeling task, the median time (IQR) was 987.8 sec (418.6) in the case of all 

graders, and 872.9 sec (621.0) vs. 1019.8 sec (479.5) in the M vs. NM groups, 

respectively. For the first 50 images, the median time necessary (262.8 sec [125.7]) was 
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slightly longer in comparison with what was needed for the last 50 images (195.8 sec 

[108.3]). It took graders with a medical background to label the last 50 images in 

median 28.6 seconds less than the first 50 images. Those graders that had no prior 

medical training needed in median 38.25 seconds less to label the last 50 images than 

the first 50.  

The median time (IQR) required per single decision in the four categories was 3.35 sec 

(3.4), 3.8 sec (4.0), 4.0 sec (4.8) and 1.8 sec (2.0) for the E, G, A, and I label, 

respectively. In the NM group, graders needed longer time to make a single labeling 

decision in each of the categories compared to the medically trained participants (3.8 vs. 

2.4 sec, 4.3 vs. 3.2 sec, 4.6 vs. 3.1 sec, and 2.0 vs. 1.6 sec for the E, G, A, and I in the 

NM vs. M groups, respectively). 

4.3.2. Grader agreement 

Cohen´s weighted kappa indicated moderate accordance among the graders when four 

categories were used (0.564 for all graders and 0.590 vs. 0.554, for the groups M and 

NM, respectively). The merging of groups E and G lead to the moderate agreement 

increasing to substantial (0.637 for all graders, and 0.657 vs. 0.627 for the groups M and 

NM, respectively). There was a further increase in Cohen’s weighted kappa when we 

merged groups E and G vs. A and I (0.665 for all graders, and 0.715 vs. 0.625 for the 

groups M and NM, respectively) (Table 8). 

In the second round of grading, when 14 labels were used, the four categories were 

compiled analogous to the categories we used in our original grading system (E/G/A/I). 

Here Cohen’s weighted kappa showed a moderate  agreement with the use of four 

categories (0.594 for all of the graders and 0.598 vs 0.568 for the groups M and NM, 

respectively), and substantial when we merged groups E and G (0.667 for all graders 

and 0.669 vs 0.612 for the groups M and NM, respectively), while merging groups A 

and I brought only a minimal increase in agreement all together and among graders  

with a medical background (0.670 for all graders and 0.708 vs. 0.581, for the groups M 

and NM, respectively) (Table 8). 
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Table 8. Inter-rater agreement in the two setups with different image quality 

category groups. 

 4 Image quality grading criteria 14 Predefined labels  

 4 groups 3 groups 2 groups 4 groups 3 groups 2 groups 

Medical 0.590 

(0.167) 

0.657 

(0.116) 

0.715 

(0.190) 

0.598 

(0.053) 

0.669 

(0.052) 

0.708 

(0.126) 

Non-

medical 

0.554 

(0.176) 

0.627 

(0.147) 

0.625 

(0.175) 

0.568 

(0.085) 

0.612 

(0.107) 

0.581 

(0.127) 

Altogether 0.564 

(0.163) 

0.637 

(0.096) 

0.665 

(0.178) 

0.594   

(0.60) 

0.667 

(0.80) 

0.670 

(0.151) 

Cohens’s weighted kappa was determined for the grading using four categories in image quality 

(Excellent (E)/ Good (G)/ Adequate (A)/ Insufficient (I)); we used 14 labels for the second round 

of grading. In the second ground, the same four categories were compiled as in the first 

(E/G/A/I). Cohens’s weighted kappa was also calculated with merging groups E and G for both 

rounds [(E+G)/A/I]. In order to evaluate the agreement when distinguishing between poor quality 

images in both rounds, Cohen’s weighted kappa was determined with two merged groups (E and 

G vs. A and I). The kappa values are displayed as medians (interquartile range) for all the graders 

in both groups (medical, non-medical). 

4.3.3. The feedback of our graders on the labeling tool 

 On evaluating the post-task feedback we found that all graders considered the 

application of the Python image labeling tool simple and grading itself uncomplicated. 

We must mention, however, that 2 of our 8 graders who had no previous programming 

experience required help launching the grading tool. They had difficulties during the 

installation of the package manager of our application, and with command lines to open 

the application (contrary to the more widespread practice of launching applications by 

clicking on an icon). As a consequence, we also provided all of our participants with a 

meticulous “program launching manual” and verbal explanation in the second round of 

grading, which eliminated these difficulties.  Five of the graders considered the size of 

the images and their resolution rather small for the grading of retinal lesions. All 

volunteers considered the grading task and both the written and oral tutorials 

intelligible. During the grading task, no decision fatigue was reported by any of the 
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graders. Five of the graders reported feeling a detectable improvement in grading with 

only 200 images and considered the task motivating.  

The graders who had medical backgrounds (one optometrist and three 

ophthalmologists) detected a relatively high number of fundus images having an at least 

partially missing optic nerve head that was. Two of our graders (one from the M and 

one from the NM group) wished that the definition of focus and illumination were better 

defined concerning the visibility of smaller retinal vasculature. Altogether, the feedback 

from the graders was positive regarding the task and the tool itself. 
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5. DISCUSSION 

Diabetes mellitus puts a large pressure on societies – in both developed and developing 

countries – as the expenses of diabetes-related ocular pathologies are steadily increasing 

[32]. In fact, in developed countries one of the main causes of blindness in the 

population between 20-65 years is diabetes [90, 91]. The sequel to DR and DME is 

fairly well understood being mostly driven by capillary dropout and resultant retinal 

ischemia and endothelial damage (which lead to retinal edema and subsequent structural 

disruption of the retina including loss of photoreceptors) [92, 93].  

According to clinical evidence, there is a decrease in the number of retinal ganglion 

cells (RGCs) prior to visible changes in the retina, before retinopathy can be detected 

[17, 94]. The decrease in contrast sensitivity [95] and reduced response on 

electroretinography have been reported in previous studies [96]. Relatively strong 

clinical evidence with OCT suggests a decline in inner retinal structures, specifically the 

GCL + IPL complex with some associations of the retinal nerve fiber layer [73, 97, 98].  

5.1. The use of artificial neural networks to differentiate between healthy and diabetic 

eyes by structural changes of the retina obtained by OCT imaging 

We presented and assessed a nonlinear prediction technique based on retinal OCT 

images for early retinopathy detection. Our approach included three phases: first, we 

performed a segmentation of the OCT images, second, we identified a candidate 

marker, and finally we formulated a feature set and performed a classification. At the 

time of our evaluation there were commonly available tools for the quantitative 

measurement of retinal thickness with OCT, whereas no algorithms have been available 

for the analysis of the optical characteristics of the retinal tissue. Furthermore, the 

combination of structural and optical information for the prediction of retinal disruption 

in diabetes has also not been described before. The predictability of any retinal layer 

integrity changes – in our example by applying a Bayesian radial basis function network 

– may be important in the assessment of cellular loss in eyes of patients with diabetes. 

We could show that these parameters of the ganglion cell-plexiform complex may be 

useful in the prediction of and could be used for the discrimination between MDR and 

healthy eyes with the help of the TH/FD pair as the input/target feature in the Bayesian 

radial basis function network. Fractal dimension provides an estimation of the 
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roughness of intraretinal structure, and could potentially be used to distinguish eyes 

with mild non-proliferative retinopathy (NPDR) and eyes from non-diabetic subjects. 

Our data suggest that the ganglion cells and the OPL might have an increased 

susceptibility the stage of mild DR. Interestingly, the features of the RNFL, OS, and 

RPE appeared to be able to estimate structural disintegration of the retina while 

distinguishing between MDR and DM eyes. This specific result was consistent with 

previous research that reported alterations in the outer retinal segment during the 

comparison of the thickness of the macula in diabetic subjects with mild retinopathy and 

eyes of healthy subjects [68, 99]. These findings could assist in the more precise 

detection of mild diabetic retinopathy with the help of OCT imaging employed in a 

screening setting. 

We found some limitations to our study employing ANN. Cross-study comparisons 

were not possible, because there were no studies conducted regarding the changes in 

retinal thickness and optical tissue properties by the implementation of ANNs. Also, 

more precise and robust predictions of the classification test performance could have 

been made using larger sample sizes. Finally, different classification methods are 

necessary in order to find the best models that can improve the discriminant power of 

OCT-generated data which are used for clinical decision support. Furthermore, our 

results had to be confirmed on data provided by Spectral-domain OCT devices because 

of their higher spatial resolution. However, one must acknowledge that at the time of 

our study, time-domain Stratus OCT was the most commonly used device world-wide. 

In the meantime, multiple studies were trying to correlate the observations of the inner 

and outer retinal changes found with intrinsic ophthalmic imaging (OCT and confocal 

microscopy) and showed promising results [100, 101]. Still, it is very challenging to 

align their findings with the supposed metabolic and electrophysiological changes in 

humans and animal models. 

From the second half of the 2010’s, there has also been a major development in the ML 

approaches. With the growing amount and complexity of data and the increasing 

processing capacity of computers, deep neural networks gained importance, especially 

deep convolutional neural networks (CNN) in retinal image recognition [36, 102, 103]. 

In the CNNs there are several “hidden layers of neurons” which allow more abstract 

data processing and pattern recognition.  



38 

 

Thus, although we employed state-of-the-art methodology at the time of our 

assessments, deep learning methodologies trained on huge datasets have meanwhile 

gained substantial importance. Although the exact parameters affecting how these 

algorithms work are not exactly known due to the “black box effect” (the algorithms do 

not reveal the features they are observing, only attention maps can be generated in most 

cases, and it is most possible that these CNNs are using some of the structural or even 

optical characteristics of the images). 

5.2. Detailed histological assessment of ganglion cell changes in Zucker Diabetic Fatty 

rats 

In accordance with our studies employing the Bayesian ANN, there are several clinical 

studies suggesting a loss of the ganglion cell and IPL complex in diabetes with some 

involvement of the RNFL as well [73, 97, 98]. These findings are important because 

they help understand the early pathophysiological changes of the retina which later in 

severe, sight-threatening complications. In order to assess this in more detail, multiple 

animal studies were conducted to clarify the involvement of retinal ganglion cells in 

diabetes and to describe the earliest changes in the retina. Nevertheless, these studies 

yielded contradictory results, with some studies reporting an involvement of the RGCs 

[21, 104, 105] and some studies showing no changes [64-66]. 

According to our work performed in ZDF rats, utilizing retinal sections only and a Brn-

3a, NeuN, and RBPMS staining methodology, we could identify photoreceptor 

degeneration, glial response, and amacrine cell number changes. However, the use of 

Brn-3a staining was not conclusive of any apoptotic changes in the ganglion cell 

numbers [66]. In fact, even with the application of additional non- pan-ganglionic 

markers (NeuN and RBPMS), no morphologically or statistically significant difference 

could be revealed between diabetic and control ZDF rats, and thus we could not provide 

evidence for the aforementioned clinical observations. In our model the animals were 

kept diabetic for a relatively long time of six months, and thus the question remains how 

this discrepancy arises. According to the 4-year longitudinal results of Sohn et al., there 

is retinal neurodegeneration preceding the earliest microvascular changes. Their results 

were confirmed with OCT image analysis and immunohistochemistry in vivo in humans 

and in rodent models, as well as in a post-mortem human setting [21]. Finding reliable 
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biomarkers is difficult in the case of DNP; consequently, the clinical observations 

mentioned above could be considered as clinical substitutes in its diagnosis and therapy.  

In our study, we could not show any significant RGC loss or a major change in staining 

patterns. We could also exclude the possibility of significant IPL pathology resulting in 

thickness or stratification pattern alterations [76]. According to the above, the clinical 

observations of GCLC thinning is not the earliest retinal change in diabetes, and thus 

the outer retinal alterations that we confirmed earlier rather precede any inner retinal 

pathologies [19, 65, 66, 82]. The latter theory warrants further clinical investigation for 

the assessment of early diabetic retinal changes. 

5.3. The assessment of the reliability of image quality labeling in the cohort of graders 

with diverse backgrounds 

The structural retinal alterations in diabetes detectable on either OCT or color fundus 

images could serve the early detection and classification of diabetic retinopathy, and 

thus help to prevent diabetic vision loss. Based on this, many computerized, semi-

automated analysis techniques are known in the literature that could decrease the 

amount of work and related expenditure for expert image grading [56]. Simultaneously,  

deep learning algorithms are increasingly being adopted that can be helpful in the timely 

diagnosis of various retinal pathologies [57]. 

The implementation of such DL algorithms requires training on a large set of 

meticulously and precisely labeled images, and thus the grading performance of the 

algorithm strongly relies on the quality of the data used for training. Therefore, the 

labeling step is crucial in obtaining reliable results and is often a source of unnoticed 

bias in the development of DL-based solutions for screening or diagnostic purposes. 

According to previous data, following intensive training of 1-2 months, mid-level 

ophthalmologic personnel or even non-expert, non-medical graders are able to 

accurately classify photos of the retina with at least a moderate level of DR [106-108]. 

The process of image labeling in the generation of ground truth can be made more time-

efficient through crowdsourcing, where volunteers do an online analysis with or without 

a charge. Mechanical Amazon Turk is considered to be relatively inexpensive yet still 

effective to rapidly identify ocular diseases such as follicular trachoma or DR on 

photographs [60, 61]. In contrast to recent literature describing inter-rater repeatability, 
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we also examined the time of single decisions and the time for the completion of quality 

labeling with different complexities, in the hands of graders with or without a 

background in medicine. 

Previous data suggests [60], graders without medical background can grade retinal 

photographs rapidly and in a cost-effective way. Non-medical graders in our study spent 

seventeen minutes in median on the grading of 200 images. Based on this, the labeling 

of 20,000 retinal images should be completed in merely 90 minutes by a total of 20 

graders without any background in ophthalmology. Medically trained labelers can 

potentially achieve better results; nevertheless, in this case reproducibility and 

specificity/sensitivity would also need to be evaluated using images from different pools 

[60]. 

We developed our python-based grading tool also to assess general image quality with 

the help of human labelers. We also wanted to assess if the delegation of labeling to 

people without medical knowledge could be of any disadvantage.  

We employed a set of fundus images that had been taken by different fundus cameras, 

thus representing a real-life setting where image quality labeling does not depend on the 

device used for imaging, serving as a further strength of our work.   

  

AI together with its advantages as well as drawbacks will become accessible to a large 

number of people. The importance of crowdsourcing is on the rise in various projects 

that utilize human intelligence. Our work is significant in that it may provide some help 

on obtaining reliable ground truth data – even with the help of incompletely trained 

volunteers – for the training of deep learning algorithms in the future. Our results imply 

that fewer labels and grading categories can be sufficient to achieve this goal. Besides, 

such a simple tool can help to solve the well-known problem with images of poor 

quality that is present in all public repositories (such as EyePACS and MRL Eye) and 

also in various smaller databases of various institutions. These images hinder not only 

the grading but also the training of AI-based algorithms. Our solution could be easily 

implemented to pinpoint poor quality images and thus improve grading efficiency, even 

by simply involving “citizen scientists”. Our aim is to utilize our tool to further label 

fundus images aimed for the automated assessment of image quality and diabetic 
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retinopathy grading. We hope that our application will also aid the advancement of 

other deep learning algorithms in the field. 
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6. CONCLUSIONS 

In our work we investigated different aspects of diabetic retinal changes in vivo, both 

histologically and using clinical imaging methods.  

1. We could show that by using a Bayesian ANN with retinal OCT parameters as an 

input feature, the distinction between healthy and diabetic eyes without retinal changes 

(DM) and with mild retinopathy (MDR) is feasible. 

2. In fact, the fractal dimension of the GCL + IPL complex and OPL which had been 

predicted by the Bayesian radial basis function network could distinguish eyes with 

mild NPDR from healthy eyes. Additionally, the thickness and fractal dimension of the 

RNFL, OS, and RPE seem to be promising biomarkers for the classification of eyes in 

diabetic patients with or without any signs of mild NPDR.  

3. In contrast to this, our work in a ZDF rat model of type 2 diabetes could not confirm 

any direct ganglion cell loss which is suggestive of early retinal changes happening 

elsewhere in the retina, most possibly in the outer retina as proposed by other studies. 

This is in line with the additional parameters identified in our clinical study (namely, the 

OS and RPE) and warrants further investigation. 

4. The retinal funduscopic features are equally important for the detection of diabetic 

retinal changes as the structural information derived from OCT. We could show that for 

the ground truth generation of databases that enable the training of AI algorithms, high 

agreement level can be achieved even by a very short training and a small number of 

fundus images, despite the lack of medical background. 

5. Our results underline the importance of a simple grading scheme in this scenario, as it 

might be difficult to appreciate fine image quality features when utilizing robust deep 

learning techniques. 

6. Our methodology has been proven to be user-friendly and well perceived by 

participants. It can efficiently serve the generation of training datasets of AI algorithms 

for the robust distinction of poor-quality images that are insufficient for screening. 
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7. SUMMARY 

Visual impairment due to diabetes mellitus (DM) poses a huge burden on societies all 

over the world. The better understanding of diabetes-related retinal changes and their 

early detection is of pivotal importance in the prevention and efficient treatment of 

diabetic eye complications. The diagnosis of these alterations is mostly based on optical 

coherence tomography (OCT) imaging for diabetic macular edema and color fundus 

photography for diabetic retinopathy (DR). The vast amount of imaging data necessary 

for population-based screening calls for action to increase efficiency through the 

implementation of resource saving tools based, among others, on advanced artificial 

(AI) intelligence-driven technologies.  

In our current work, we aimed to combine different approaches to address this problem. 

First, we investigated the early diabetes-related OCT markers that could identify early 

diabetic retinal pathology using artificial intelligence before any structural changes 

develop. As a second step and based in part on these results, we looked at ganglion cell 

changes in an animal model of type 2 diabetes. Finally, we assessed the aspects of 

image quality labeling of color fundus photographs from diabetic subjects using a 

Python-based tool under different conditions, through the employment of graders with 

or without medical backgrounds.  

We found that a Bayesian artificial neural network with features extracted from OCT 

data could potentially discriminate between healthy eyes and eyes with or without mild 

DRP by using data from the ganglion cell and inner plexiform layer complex. In 

contrast to this, we could not confirm any ganglion cell changes in the ZDF model of 

Type 2 diabetes, which suggests that the clinical observation of inner retinal changes 

might be a more chronic sequel in diabetes. Finally, the third part of our work shows 

promise that even “citizen scientists” undergoing very brief training could achieve high 

levels of agreement in the labeling of color fundus photographs using simple grading 

systems and only a few categories. This, in turn, can provide better ground truth data 

within a short time frame and employ significantly fewer resources for the training of 

deep learning-based algorithms.  

In summary, our work based on clinical imaging and animal histological data might 

contribute to a better understanding and earlier detection of diabetic retinal pathology. 



44 

 

 8. REFERENCES 

 

1. Kolb H. Simple Anatomy of the Retina. In:Kolb H, Fernandez E ,Nelson R 

(szerk.), Webvision: The Organization of the Retina and Visual System. Salt 

Lake City (UT), 1995. 

2. Bringmann A, Wiedemann P. (2012) Muller glial cells in retinal disease. 

Ophthalmologica, 227: 1-19. 

3. Ahnelt PK. (1998) The photoreceptor mosaic. Eye (Lond), 12 ( Pt 3b): 531-540. 

4. Mollon JD, Regan BC, Bowmaker JK. (1998) What is the function of the cone-

rich rim of the retina? Eye (Lond), 12 ( Pt 3b): 548-552. 

5. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. (1990) Human 

photoreceptor topography. J Comp Neurol, 292: 497-523. 

6. Lukáts Á. (2004) Photopigment coexpression in mammals: compartive and 

developmental aspects. Ph. D. Thesis. In: Department of Human Morphology 

and Developmental Biology, Semmelweis University, Budapest 

7. King AJ. (2012) The use of animal models in diabetes research. Br J Pharmacol, 

166: 877-894. 

8. Phillips MS, Liu Q, Hammond HA, Dugan V, Hey PJ, Caskey CJ, Hess JF. 

(1996) Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet, 13: 

18-19. 

9. Peterson RG, Little LA, Neel MA. (1990) WKY Fatty Rat as a Model of Obesity 

and Non-insulin-dependent Diabetes Mellitus. ILAR J, 32: 13-15. 

10. Sparks JD, Phung TL, Bolognino M, Cianci J, Khurana R, Peterson RG, Sowden 

MP, Corsetti JP, Sparks CE. (1998) Lipoprotein alterations in 10- and 20-week-

old Zucker diabetic fatty rats: hyperinsulinemic versus insulinopenic 

hyperglycemia. Metabolism, 47: 1315-1324. 

11. Finegood DT, McArthur MD, Kojwang D, Thomas MJ, Topp BG, Leonard T, 

Buckingham RE. (2001) Beta-cell mass dynamics in Zucker diabetic fatty rats. 

Rosiglitazone prevents the rise in net cell death. Diabetes, 50: 1021-1029. 

12. Gaál Zs GL, Hidvégi T, Jermendy Gy, Kempler P, Winkler G, Wittmann I, (ed. 

Jermendy Gy). (2017) Egészségügyi szakmai irányelv – A diabetes mellitus 



45 

 

kórismézéséről, a cukorbetegek antihyperglykaemiás kezeléséről és 

gondozásáról felnőttkorban. 25: 3-77 

13. Friend J, Thoft RA. (1984) The diabetic cornea. Int Ophthalmol Clin, 24: 111-

123. 

14. Davidson MB, Bate G, Kirkpatrick P. (2005) Exenatide. Nat Rev Drug Discov, 

4: 713-714. 

15. Brownlee M. (2001) Biochemistry and molecular cell biology of diabetic 

complications. Nature, 414: 813-820. 

16. Tabandeh HG, M. F. The Retina in Systemic Disease: A Color Manual of 

Ophthalmoscopy. Thieme Medical Publishers, New York, 2009: 21-36 

17. Barber AJ. (2003) A new view of diabetic retinopathy: a neurodegenerative 

disease of the eye. Prog Neuropsychopharmacol Biol Psychiatry, 27: 283-290. 

18. Gastinger MJ, Singh RS, Barber AJ. (2006) Loss of cholinergic and 

dopaminergic amacrine cells in streptozotocin-diabetic rat and Ins2Akita-

diabetic mouse retinas. Invest Ophthalmol Vis Sci, 47: 3143-3150. 

19. Enzsoly A, Szabo A, Kantor O, David C, Szalay P, Szabo K, Szel A, Nemeth J, 

Lukats A. (2014) Pathologic alterations of the outer retina in streptozotocin-

induced diabetes. Invest Ophthalmol Vis Sci, 55: 3686-3699. 

20. Pardue MT, Barnes CS, Kim MK, Aung MH, Amarnath R, Olson DE, Thule 

PM. (2014) Rodent Hyperglycemia-Induced Inner Retinal Deficits are Mirrored 

in Human Diabetes. Transl Vis Sci Technol, 3: 6. 

21. Sohn EH, van Dijk HW, Jiao C, Kok PH, Jeong W, Demirkaya N, Garmager A, 

Wit F, Kucukevcilioglu M, van Velthoven ME, DeVries JH, Mullins RF, Kuehn 

MH, Schlingemann RO, Sonka M, Verbraak FD, Abramoff MD. (2016) Retinal 

neurodegeneration may precede microvascular changes characteristic of diabetic 

retinopathy in diabetes mellitus. Proc Natl Acad Sci U S A, 113: E2655-2664. 

22. Verbraak FD. (2014) Neuroretinal degeneration in relation to vasculopathy in 

diabetes. Diabetes, 63: 3590-3592. 

23. Luu CD, Szental JA, Lee SY, Lavanya R, Wong TY. (2010) Correlation 

between retinal oscillatory potentials and retinal vascular caliber in type 2 

diabetes. Invest Ophthalmol Vis Sci, 51: 482-486. 



46 

 

24. Feitosa-Santana C, Paramei GV, Nishi M, Gualtieri M, Costa MF, Ventura DF. 

(2010) Color vision impairment in type 2 diabetes assessed by the D-15d test 

and the Cambridge Colour Test. Ophthalmic Physiol Opt, 30: 717-723. 

25. Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. (1984) The Wisconsin 

epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic 

retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol, 102: 

527-532. 

26. Varma R, Torres M, Pena F, Klein R, Azen SP, Los Angeles Latino Eye Study 

G. (2004) Prevalence of diabetic retinopathy in adult Latinos: the Los Angeles 

Latino eye study. Ophthalmology, 111: 1298-1306. 

27. Toth G, Nagy ZZ, Nemeth J. (2021) Model-based economic burden of diabetic 

retinopathy in Hungary. Orv Hetil, 162: 298-305. 

28. Toth G, Limburg H, Szabo D, Sandor GL, Nagy ZZ, Nemeth J. (2021) Rapid 

assessment of avoidable blindness-based healthcare costs of diabetic retinopathy 

in Hungary and its projection for the year 2045. Br J Ophthalmol, 105: 1116-

1120. 

29. Wilkinson CP, Ferris FL, 3rd, Klein RE, Lee PP, Agardh CD, Davis M, Dills D, 

Kampik A, Pararajasegaram R, Verdaguer JT, Global Diabetic Retinopathy 

Project G. (2003) Proposed international clinical diabetic retinopathy and 

diabetic macular edema disease severity scales. Ophthalmology, 110: 1677-

1682. 

30. Somfai GM. (2008) Clinical and laboratory assessment of diabetic 

microvascular complications.  Ph. D. Thesis. In: Department of Ophthalmology, 

Semmelweis University, Budapest 

31. International Diabetes Federation. Diabetes Atlas. (10th Edition): Brussels. 

Belgium; 2022. https://diabetesatlas.org/ (last accessed on July the 28
th

 2022) 

32. World Health Organization. Global Report on diabetes 2021. 

https://www.who.int/news-room/fact-sheets/detail/diabetes (last accessed on 

July the 28
th

 2022)  

33. Flaxel CJ, Adelman RA, Bailey ST, Fawzi A, Lim JI, Vemulakonda GA, Ying 

GS. (2020) Diabetic Retinopathy Preferred Practice Pattern(R). Ophthalmology, 

127: P66-P145. 

https://diabetesatlas.org/
https://www.who.int/news-room/fact-sheets/detail/diabetes


47 

 

34. Kras A, Celi LA, Miller JB. (2020) Accelerating ophthalmic artificial 

intelligence research: the role of an open access data repository. Curr Opin 

Ophthalmol, 31: 337-350. 

35. OECD. (2018) Computed tomography (CT) 

exams.https://doi.org/10.1787/3c994537-en (last accessed on February the 28
th

 

2022) 

36. De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell 

S, Askham H, Glorot X, O'Donoghue B, Visentin D, van den Driessche G, 

Lakshminarayanan B, Meyer C, Mackinder F, Bouton S, Ayoub K, Chopra R, 

King D, Karthikesalingam A, Hughes CO, Raine R, Hughes J, Sim DA, Egan C, 

Tufail A, Montgomery H, Hassabis D, Rees G, Back T, Khaw PT, Suleyman M, 

Cornebise J, Keane PA, Ronneberger O. (2018) Clinically applicable deep 

learning for diagnosis and referral in retinal disease. Nat Med, 24: 1342-1350. 

37. (1991) Grading diabetic retinopathy from stereoscopic color fundus 

photographs--an extension of the modified Airlie House classification. ETDRS 

report number 10. Early Treatment Diabetic Retinopathy Study Research Group. 

Ophthalmology, 98: 786-806. 

38. Nagi DK, Gosden C, Walton C, Winocour PH, Turner B, Williams R, James J, 

Holt RI. (2009) A national survey of the current state of screening services for 

diabetic retinopathy: ABCD-diabetes UK survey of specialist diabetes services 

2006. Diabet Med, 26: 1301-1305. 

39. Stefansson E. (2006) Prevention of diabetic blindness. Br J Ophthalmol, 90: 2-3. 

40. Williams GA, Scott IU, Haller JA, Maguire AM, Marcus D, McDonald HR. 

(2004) Single-field fundus photography for diabetic retinopathy screening: a 

report by the American Academy of Ophthalmology. Ophthalmology, 111: 

1055-1062. 

41. Pandey R, Morgan MM, Murphy C, Kavanagh H, Acheson R, Cahill M, 

McGettrick P, O'Toole L, Hamroush F, Mooney T, Byrne H, Fitzpatrick P, 

Keegan DJ. (2022) Irish National Diabetic RetinaScreen Programme: report on 

five rounds of retinopathy screening and screen-positive referrals. (INDEAR 

study report no. 1). Br J Ophthalmol, 106: 409-414. 

https://doi.org/10.1787/3c994537-en


48 

 

42. Munk MR, Somfai GM, de Smet MD, Donati G, Menke MN, Garweg JG, 

Ceklic L. (2022) The Role of Intravitreal Corticosteroids in the Treatment of 

DME: Predictive OCT Biomarkers. Int J Mol Sci, 23. 

43. Delia Cabrera DeBuc (2011). A Review of Algorithms for Segmentation of 

Retinal Image Data Using Optical Coherence Tomography, Image 

Segmentation, Dr. Pei-Gee Ho (Ed.), ISBN: 978-953-307-228-9, InTech, 

Available from: http://www.intechopen.com/books/image-segmentation/a-

review-of-algorithms-forsegmentation-of-retinal-image-data-using-optical-

coherence-tomography (last accessed on August the 28
th

 2022) : 15-54 

44. Knighton RW, Gregori G. (2012) The shape of the ganglion cell plus inner 

plexiform layers of the normal human macula. Invest Ophthalmol Vis Sci, 53: 

7412-7420. 

45. Schaudig UH, Glaefke C, Scholz F, Richard G. (2000) Optical coherence 

tomography for retinal thickness measurement in diabetic patients without 

clinically significant macular edema. Ophthalmic Surg Lasers, 31: 182-186. 

46. Oshitari T, Hanawa K, Adachi-Usami E. (2009) Changes of macular and RNFL 

thicknesses measured by Stratus OCT in patients with early stage diabetes. Eye 

(Lond), 23: 884-889. 

47. Bizheva K, Pflug R, Hermann B, Povazay B, Sattmann H, Qiu P, Anger E, 

Reitsamer H, Popov S, Taylor JR, Unterhuber A, Ahnelt P, Drexler W. (2006) 

Optophysiology: depth-resolved probing of retinal physiology with functional 

ultrahigh-resolution optical coherence tomography. Proc Natl Acad Sci U S A, 

103: 5066-5071. 

48. Tan O, Li G, Lu AT, Varma R, Huang D, Advanced Imaging for Glaucoma 

Study G. (2008) Mapping of macular substructures with optical coherence 

tomography for glaucoma diagnosis. Ophthalmology, 115: 949-956. 

49. Alam M, Zhang Y, Lim JI, Chan RVP, Yang M, Yao X. (2020) Quantitative 

Optical Coherence Tomography Angiography Features for Objective 

Classification and Staging of Diabetic Retinopathy. Retina, 40: 322-332. 

50. Gavrilova Y., https://serokell.io/blog/ai-ml-dl-difference (last accessed on 

August the 13
th

 2022)   

http://www.intechopen.com/books/image-segmentation/a-review-of-algorithms-forsegmentation-of-retinal-image-data-using-optical-coherence-tomography
http://www.intechopen.com/books/image-segmentation/a-review-of-algorithms-forsegmentation-of-retinal-image-data-using-optical-coherence-tomography
http://www.intechopen.com/books/image-segmentation/a-review-of-algorithms-forsegmentation-of-retinal-image-data-using-optical-coherence-tomography
https://serokell.io/blog/ai-ml-dl-difference


49 

 

51. DeBuc DC. (2020) Artificial intelligence in the ophthalmic landscape. Nepal J 

Ophthalmol, 12: 1-3. 

52. Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, Tan GSW, 

Schmetterer L, Keane PA, Wong TY. (2019) Artificial intelligence and deep 

learning in ophthalmology. Br J Ophthalmol, 103: 167-175. 

53. Loo J, Clemons TE, Chew EY, Friedlander M, Jaffe GJ, Farsiu S. (2020) 

Beyond Performance Metrics: Automatic Deep Learning Retinal OCT Analysis 

Reproduces Clinical Trial Outcome. Ophthalmology, 127: 793-801. 

54. Naz H, Ahuja S. (2020) Deep learning approach for diabetes prediction using 

PIMA Indian dataset. J Diabetes Metab Disord, 19: 391-403. 

55. Zhang K, Liu X, Xu J, Yuan J, Cai W, Chen T, Wang K, Gao Y, Nie S, Xu X, 

Qin X, Su Y, Xu W, Olvera A, Xue K, Li Z, Zhang M, Zeng X, Zhang CL, Li O, 

Zhang EE, Zhu J, Xu Y, Kermany D, Zhou K, Pan Y, Li S, Lai IF, Chi Y, Wang 

C, Pei M, Zang G, Zhang Q, Lau J, Lam D, Zou X, Wumaier A, Wang J, Shen 

Y, Hou FF, Zhang P, Xu T, Zhou Y, Wang G. (2021) Deep-learning models for 

the detection and incidence prediction of chronic kidney disease and type 2 

diabetes from retinal fundus images. Nat Biomed Eng, 5: 533-545. 

56. Trucco E, Ruggeri A, Karnowski T, Giancardo L, Chaum E, Hubschman JP, Al-

Diri B, Cheung CY, Wong D, Abramoff M, Lim G, Kumar D, Burlina P, 

Bressler NM, Jelinek HF, Meriaudeau F, Quellec G, Macgillivray T, Dhillon B. 

(2013) Validating retinal fundus image analysis algorithms: issues and a 

proposal. Invest Ophthalmol Vis Sci, 54: 3546-3559. 

57. Li JO, Liu H, Ting DSJ, Jeon S, Chan RVP, Kim JE, Sim DA, Thomas PBM, 

Lin H, Chen Y, Sakomoto T, Loewenstein A, Lam DSC, Pasquale LR, Wong 

TY, Lam LA, Ting DSW. (2021) Digital technology, tele-medicine and artificial 

intelligence in ophthalmology: A global perspective. Prog Retin Eye Res, 82: 

100900. 

58. Khan SM, Liu X, Nath S, Korot E, Faes L, Wagner SK, Keane PA, Sebire NJ, 

Burton MJ, Denniston AK. (2021) A global review of publicly available datasets 

for ophthalmological imaging: barriers to access, usability, and generalisability. 

Lancet Digit Health, 3: e51-e66. 



50 

 

59. Panch T, Pollard TJ, Mattie H, Lindemer E, Keane PA, Celi LA. (2020) "Yes, 

but will it work for my patients?" Driving clinically relevant research with 

benchmark datasets. NPJ Digit Med, 3: 87. 

60. Brady CJ, Villanti AC, Pearson JL, Kirchner TR, Gupta OP, Shah CP. (2014) 

Rapid grading of fundus photographs for diabetic retinopathy using 

crowdsourcing. J Med Internet Res, 16: e233. 

61. Brady CJN, F.; Wolle, M.A.; Mkocha, H; West, S.K. (2021) Crowdsourcing 

Can Match Field Grading Validity for Follicular Trachoma. In: ARVO 2021 

Vol. 62 p. 1788 

62. Abramoff MD, Lavin PT, Birch M, Shah N, Folk JC. (2018) Pivotal trial of an 

autonomous AI-based diagnostic system for detection of diabetic retinopathy in 

primary care offices. NPJ Digit Med, 1: 39. 

63. Ipp E, Liljenquist D, Bode B, Shah VN, Silverstein S, Regillo CD, Lim JI, 

Sadda S, Domalpally A, Gray G, Bhaskaranand M, Ramachandra C, Solanki K, 

EyeArt Study G. (2021) Pivotal Evaluation of an Artificial Intelligence System 

for Autonomous Detection of Referrable and Vision-Threatening Diabetic 

Retinopathy. JAMA Netw Open, 4: e2134254. 

64. Johnson LE, Larsen M, Perez MT. (2013) Retinal adaptation to changing 

glycemic levels in a rat model of type 2 diabetes. PLoS One, 8: e55456. 

65. Enzsoly A, Szabo A, Szabo K, Szel A, Nemeth J, Lukats A. (2015) Novel 

features of neurodegeneration in the inner retina of early diabetic rats. Histol 

Histopathol, 30: 971-985. 

66. Szabo K, Enzsoly A, Dekany B, Szabo A, Hajdu RI, Radovits T, Matyas C, 

Olah A, Laurik LK, Somfai GM, Merkely B, Szel A, Lukats A. (2017) 

Histological Evaluation of Diabetic Neurodegeneration in the Retina of Zucker 

Diabetic Fatty (ZDF) Rats. Sci Rep, 7: 8891. 

67. Somfai GM, Tatrai E, Laurik L, Varga B, Olvedy V, Jiang H, Wang J, Smiddy 

WE, Somogyi A, DeBuc DC. (2014) Automated classifiers for early detection 

and diagnosis of retinopathy in diabetic eyes. BMC Bioinformatics, 15: 106. 

68. Verma A, Rani PK, Raman R, Pal SS, Laxmi G, Gupta M, Sahu C, 

Vaitheeswaran K, Sharma T. (2009) Is neuronal dysfunction an early sign of 

diabetic retinopathy? Microperimetry and spectral domain optical coherence 



51 

 

tomography (SD-OCT) study in individuals with diabetes, but no diabetic 

retinopathy. Eye (Lond), 23: 1824-1830. 

69. Cabrera Fernandez D, Salinas HM, Puliafito CA. (2005) Automated detection of 

retinal layer structures on optical coherence tomography images. Opt Express, 

13: 10200-10216. 

70. Varga BE, Gao W, Laurik KL, Tatrai E, Simo M, Somfai GM, Cabrera DeBuc 

D. (2015) Investigating Tissue Optical Properties and Texture Descriptors of the 

Retina in Patients with Multiple Sclerosis. PLoS One, 10: e0143711. 

71. Hageman GS, Marmor MF, Yao XY, Johnson LV. (1995) The 

interphotoreceptor matrix mediates primate retinal adhesion. Arch Ophthalmol, 

113: 655-660. 

72. Costa RA, Skaf M, Melo LA, Jr., Calucci D, Cardillo JA, Castro JC, Huang D, 

Wojtkowski M. (2006) Retinal assessment using optical coherence tomography. 

Prog Retin Eye Res, 25: 325-353. 

73. Cabrera DeBuc D, Somfai GM. (2010) Early detection of retinal thickness 

changes in diabetes using Optical Coherence Tomography. Med Sci Monit, 16: 

MT15-21. 

74. Gao WT, E.; Somfai, G. M.; Cabrera, D. C. (2011) Assessing the performance 

of optical properties determination of intraretinal layers in healthy normal and 

type 1 diabetic eyes using optical coherence tomography Vol. 52 pp. 4-22 

75. Matyas C, Nemeth BT, Olah A, Torok M, Ruppert M, Kellermayer D, Barta 

BA, Szabo G, Kokeny G, Horvath EM, Bodi B, Papp Z, Merkely B, Radovits T. 

(2017) Prevention of the development of heart failure with preserved ejection 

fraction by the phosphodiesterase-5A inhibitor vardenafil in rats with type 2 

diabetes. Eur J Heart Fail, 19: 326-336. 

76. Hajdu RI, Laurik LK, Szabo K, Dekany B, Almasi Z, Enzsoly A, Szabo A, 

Radovits T, Matyas C, Olah A, Szel A, Somfai GM, David C, Lukats A. (2019) 

Detailed Evaluation of Possible Ganglion Cell Loss in the Retina of Zucker 

Diabetic Fatty (ZDF) Rats. Sci Rep, 9: 10463. 

77. Nadal-Nicolas FM, Jimenez-Lopez M, Sobrado-Calvo P, Nieto-Lopez L, 

Canovas-Martinez I, Salinas-Navarro M, Vidal-Sanz M, Agudo M. (2009) 

Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time 



52 

 

course studies in naive and optic nerve-injured retinas. Invest Ophthalmol Vis 

Sci, 50: 3860-3868. 

78. Charalambous P, Wang X, Thanos S, Schober A, Unsicker K. (2013) Regulation 

and effects of GDF-15 in the retina following optic nerve crush. Cell Tissue Res, 

353: 1-8. 

79. Kwong JM, Caprioli J, Piri N. (2010) RNA binding protein with multiple 

splicing: a new marker for retinal ganglion cells. Invest Ophthalmol Vis Sci, 51: 

1052-1058. 

80. Xiang M, Zhou L, Macke JP, Yoshioka T, Hendry SH, Eddy RL, Shows TB, 

Nathans J. (1995) The Brn-3 family of POU-domain factors: primary structure, 

binding specificity, and expression in subsets of retinal ganglion cells and 

somatosensory neurons. J Neurosci, 15: 4762-4785. 

81. Belforte N, Sande PH, de Zavalia N, Dorfman D, Rosenstein RE. (2012) 

Therapeutic benefit of radial optic neurotomy in a rat model of glaucoma. PLoS 

One, 7: e34574. 

82. Szabo K, Szabo A, Enzsoly A, Szel A, Lukats A. (2014) Immunocytochemical 

analysis of misplaced rhodopsin-positive cells in the developing rodent retina. 

Cell Tissue Res, 356: 49-63. 

83. Li TG, Y.; Wang, K.; Guo, S.; Liu, H.; Kanga, H. (2019) Diagnostic assessment 

of deep learning algorithms for diabetic retinopathy screening. Information 

Sciences, 501: 511-522. 

84. Cuadros J, Bresnick G. (2009) EyePACS: an adaptable telemedicine system for 

diabetic retinopathy screening. J Diabetes Sci Technol, 3: 509-516. 

85. Fleming AD, Philip S, Goatman KA, Olson JA, Sharp PF. (2006) Automated 

assessment of diabetic retinal image quality based on clarity and field definition. 

Invest Ophthalmol Vis Sci, 47: 1120-1125. 

86. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, 

Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, 

Mega JL, Webster DR. (2016) Development and Validation of a Deep Learning 

Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus 

Photographs. JAMA, 316: 2402-2410. 



53 

 

87. Zapata MA, Royo-Fibla D, Font O, Vela JI, Marcantonio I, Moya-Sanchez EU, 

Sanchez-Perez A, Garcia-Gasulla D, Cortes U, Ayguade E, Labarta J. (2020) 

Artificial Intelligence to Identify Retinal Fundus Images, Quality Validation, 

Laterality Evaluation, Macular Degeneration, and Suspected Glaucoma. Clin 

Ophthalmol, 14: 419-429. 

88. Laurik-Feuerstein KL, Sapahia R, Cabrera DeBuc D, Somfai GM. (2022) The 

assessment of fundus image quality labeling reliability among graders with 

different backgrounds. PLoS One, 17: e0271156. 

89. Nadal-Nicolas FM, Jimenez-Lopez M, Salinas-Navarro M, Sobrado-Calvo P, 

Alburquerque-Bejar JJ, Vidal-Sanz M, Agudo-Barriuso M. (2012) Whole 

number, distribution and co-expression of brn3 transcription factors in retinal 

ganglion cells of adult albino and pigmented rats. PLoS One, 7: e49830. 

90. Ackland P, Resnikoff S, Bourne R. (2017) World blindness and visual 

impairment: despite many successes, the problem is growing. Community Eye 

Health, 30: 71-73. 

91. Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli 

MV, Das A, Jonas JB, Keeffe J, Kempen JH, Leasher J, Limburg H, Naidoo K, 

Pesudovs K, Silvester A, Stevens GA, Tahhan N, Wong TY, Taylor HR, Vision 

Loss Expert Group of the Global Burden of Disease S. (2017) Global causes of 

blindness and distance vision impairment 1990-2020: a systematic review and 

meta-analysis. Lancet Glob Health, 5: e1221-e1234. 

92. Hammes HP. (2018) Diabetic retinopathy: hyperglycaemia, oxidative stress and 

beyond. Diabetologia, 61: 29-38. 

93. Lechner J, O'Leary OE, Stitt AW. (2017) The pathology associated with diabetic 

retinopathy. Vision Res, 139: 7-14. 

94. Chihara E, Matsuoka T, Ogura Y, Matsumura M. (1993) Retinal nerve fiber 

layer defect as an early manifestation of diabetic retinopathy. Ophthalmology, 

100: 1147-1151. 

95. Sokol S, Moskowitz A, Skarf B, Evans R, Molitch M, Senior B. (1985) Contrast 

sensitivity in diabetics with and without background retinopathy. Arch 

Ophthalmol, 103: 51-54. 



54 

 

96. Bearse MA, Jr., Han Y, Schneck ME, Barez S, Jacobsen C, Adams AJ. (2004) 

Local multifocal oscillatory potential abnormalities in diabetes and early 

diabetic retinopathy. Invest Ophthalmol Vis Sci, 45: 3259-3265. 

97. van Dijk HW, Verbraak FD, Kok PH, Stehouwer M, Garvin MK, Sonka M, 

DeVries JH, Schlingemann RO, Abramoff MD. (2012) Early neurodegeneration 

in the retina of type 2 diabetic patients. Invest Ophthalmol Vis Sci, 53: 2715-

2719. 

98. van Dijk HW, Verbraak FD, Kok PH, Garvin MK, Sonka M, Lee K, Devries JH, 

Michels RP, van Velthoven ME, Schlingemann RO, Abramoff MD. (2010) 

Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes. 

Invest Ophthalmol Vis Sci, 51: 3660-3665. 

99. Rashmi MM, R.; Crosby-Nwaobi, R.; Abdelhay, A.; Sivaprasad, S.; Heng, S. 

(2012) Retinal neuronal changes in people with diabetes.,  p. 2852 

100. Abramoff MD, Kwon YH, Ts'o D, Soliz P, Zimmerman B, Pokorny J, Kardon 

R. (2006) Visual stimulus-induced changes in human near-infrared fundus 

reflectance. Invest Ophthalmol Vis Sci, 47: 715-721. 

101. Grieve K, Roorda A. (2008) Intrinsic signals from human cone photoreceptors. 

Invest Ophthalmol Vis Sci, 49: 713-719. 

102. Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, Waldstein SM, Bogunovic H. 

(2018) Artificial intelligence in retina. Prog Retin Eye Res, 67: 1-29. 

103. Yanagihara RT, Lee CS, Ting DSW, Lee AY. (2020) Methodological 

Challenges of Deep Learning in Optical Coherence Tomography for Retinal 

Diseases: A Review. Transl Vis Sci Technol, 9: 11. 

104. Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. 

(1998) Neural apoptosis in the retina during experimental and human diabetes. 

Early onset and effect of insulin. J Clin Invest, 102: 783-791. 

105. Kern TS, Barber AJ. (2008) Retinal ganglion cells in diabetes. J Physiol, 586: 

4401-4408. 

106. McKenna M, Chen T, McAneney H, Vazquez Membrillo MA, Jin L, Xiao W, 

Peto T, He M, Hogg R, Congdon N. (2018) Accuracy of trained rural 

ophthalmologists versus non-medical image graders in the diagnosis of diabetic 

retinopathy in rural China. Br J Ophthalmol, 102: 1471-1476. 



55 

 

107. Islam FMA. (2017) Accuracy and reliability of retinal photo grading for diabetic 

retinopathy: Remote graders from a developing country and standard retinal 

photo grader in Australia. PLoS One, 12: e0179310. 

108. Thapa R, Bajimaya S, Bouman R, Paudyal G, Khanal S, Tan S, Thapa SS, van 

Rens G. (2016) Intra- and inter-rater agreement between an ophthalmologist and 

mid-level ophthalmic personnel to diagnose retinal diseases based on fundus 

photographs at a primary eye center in Nepal: the Bhaktapur Retina Study. BMC 

Ophthalmol, 16: 112. 

 



56 

 

9. BIBLIOGRAPHY OF PUBLICATIONS 

Publications related to the thesis: 

Laurik-Feuerstein KL1, Sapahia R1, DeBuc DC, Somfai GM. The assessment of fundus 

image quality labeling reliability among graders with different backgrounds. PLOS 

ONE 17: 7 Paper: 0271156, 11 p. (2022) 

1Megosztott első szerzők 

IF: 3,752* 

 

Hajdú Rozina I, Laurik LK, Szabó K, Dékány B, Almási Z, Énzsöly A, Szabó A, 

Radovits T, Mátyás C, Oláh A, Szél Á, Somfai GM, Dávid C, Lukáts Á. Detailed 

Evaluation of Possible Ganglion Cell Loss in the Retina of Zucker Diabetic Fatty (ZDF) 

Rats. SCIENTIFIC REPORTS 9: 1 Paper: 10463, 16 p. (2019) 

IF: 3,998 

 

Somfai GM, Tatrai E, Laurik L, Varga B, Olvedy V, Jiang H, Wang J, Smiddy WE, 

Somogyi A, Debuc DC. Automated classifiers for early detection and diagnosis of 

retinopathy in diabetic eyes. BMC BIOINFORMATICS 15 Paper: 106, 10 p. (2014) 

IF: 2,576 

 

* expected IF 

 

Publications not related to the thesis: 

Szentmary Nora, Fries Fabian Norbert, Daas Loay, Shi Lei, Laurik Kornelia Lenke, 

Langenbucher Achim, Seitz Berthold. Chamäleonartige Hornhautveränderungen: 

Akanthamöben-keratitis [Chameleon-Like CornealDisorders: Acanthamoeba 

Keratitis].KLINISCHE MONATSBLATTER FUR AUGENHEILKUNDE 237: 6 pp. 

754-760.(2020) 

IF: 0,700 

 

Laurik Kornélia Lenke, Milioti Georgia, Abdin Alaadin, Leonhard Marie, Tsintarakis 

Themistoklis, Seitz Berthold. Retinaler Venenverschluss – atypische Erstmanifestation 



57 

 

der okulären Toxoplasmose [Retinal Vein Occlusion–Atypical Primary Manifestationof 

Ocular Toxoplasmosis]. KLINISCHE MONATSBLATTER FUR 

AUGENHEILKUNDE 237: 8 pp. 976-979. (2020) 

IF: 0,700 

 

Laurik Kornélia Lenke, Szentmáry Nóra, Daas Loay, Langenbucher Achim, Seitz 

Berthold. Early Penetrating Keratoplasty À Chaud May Improve Outcome in Therapy-

Resistant Acanthamoeba Keratitis ADVANCES IN THERAPY 36: 9 pp. 2528-2540. 

(2019) 

IF: 3,871 

 

Szentmáry N, Daas L, Shi L, Laurik KL, Lepper S, Milioti G, Seitz B. Acanthamoeba 

keratitis – Clinical signs, differential diagnosis and treatment. JOURNAL OF 

CURRENT OPHTHALMOLOGY 31: 1 pp. 16-23. (2019) 

 

Szentmary N, Daas L, Shi L, Laurik KL, Seitz B. Akanthamobenkeratitis – klinische 

Zeichen, Diagnose, Therapie [Acanthamobenkeratitis – Clinical Signs, Diagnosis, 

Therapy]. KLINISCHE MONATSBLATTER FUR AUGENHEILKUNDE 235: 6 pp. 

671-677. (2018) 

IF: 0,792 

 

Szabo K, Enzsoly A, Dekany B, Szabo A, Hajdu RI, Radovits T, Matyas C, Olah A, 

Laurik Kornelia Lenke, Somfai GM, Merkely B, Szel A, Lukats A. Histological 

Evaluation of Diabetic Neurodegeneration in the Retina of Zucker Diabetic Fatty (ZDF) 

Rats. SCIENTIFIC REPORTS 7: 1 Paper: 8891, 17 p. (2017) 

IF: 4,122 

 

Szentmary N, Modis L, Imre L, Fust A, Daas L, Laurik L, Seitz B, Nagy ZZ. Fertőzéses 

keratitisek diagnosztikája és kezelése [Diagnostics and treatment of infectious keratitis]. 

ORVOSI HETILAP 158: 31 pp. 1203-1212. (2017) 

IF: 0,322 

 



58 

 

Varga BE, Gao W, Laurik KL, Tatrai E, Simo M, Somfai GM, Cabrera DeBuc D. 

Investigating Tissue Optical Properties and Texture Descriptors of the Retina in Patients 

with Multiple Sclerosis. PLOS ONE 10: 11 Paper: e0143711, 20 p. (2015) 

IF: 3,057 

 

Somfai GM, Tatrai E, Laurik L, Varga BE, Olvedy V, Smiddy WE, Tchitnga R, 

Somogyi A, DeBuc DC. Fractal-based analysis of optical coherence tomography data to 

quantify retinal tissue damage. BMC BIOINFORMATICS 15: 1 Paper: 295, 10 p. 

(2014) 

IF: 2,576 

 

Delia DeBuc, Tatrai Erika, Laurik Lenke, Varga Boglarka Eniko, Veronika Olvedy, 

Somogyi Aniko, William E Smiddy, Somfai Gabor Mark. Identifying Local Structural 

and Optical Derangement in the Neural Retina of Individuals with Type 1 Diabetes. 

JOURNAL OF CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY 4: 4 Paper: 

1000289, 9 p. (2013) 

 

∑IF: 26,466 



59 

 

10. ACKNOWLEDGEMENTS 

 

Throughout my scientific work, I have received essential and selfless support and 

assistance from a number of individuals. 

 

First, I would like to thank my supervisor Gábor Márk Somfai PhD and my external 

advisor Delia Cabrera DeBuc PhD for their support and guidance during the several 

years of our work together. I would like to thank both of them for their patience and 

their always wise council and empathic advice to inspire and engage my interest for our 

research as a medical student and to give me several opportunities to follow through 

until completing this dissertation. I did so, while becoming a mother and a specialist for 

ophthalmology. In a lot of ways, thank to you. 

 

I would like to thank my fellow researchers and colleagues who have worked together 

on research, data collection, data analysis, statistical evaluation, and preparation of 

scientific work for publication, especially Rozina Ida Hajdú, Rishav Sapahia, Boglárka 

Enikő Varga PhD, Anna Bakos-Kiss PhD, Irén Szalai, Erika Tátrai PhD, Ákos Lukáts 

PhD, Klaudia Szabó PhD, Csaba Dávid Phd és Arnold Szabó for their help in designing 

and carrying out the methodological background of the research and Prof. Zoltán Zsolt 

Nagy DSc an Prof. Ágoston Szél DSc for providing the opportunity to carry out the 

research at their Institute. 

I would also like to thank the Éva Kovácsné Dobozi and Nikolett Májer Dóczi for their 

valuable work and help through the histological experiments, as well as László Laurik, 

Viviane Guignard, Martin Lörtscher, Irén Szalai, Marco Feuerstein and László Miklós 

Laurik for their time and effort performing the grading task of the image labelling study.  

 

Special thanks to Marianna Kondorosiné Török PhD and all members of the Workgroup 

for Science Management, Doctoral School, for their support in writing my dissertation 

and completing it as soon as possible 

 

And finally, I would like to thank my family and friends for their understanding and 

support during the whole process. 


