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1. INTRODUCTION 

 

 

 

1.1 Rheumatoid arthritis and psoriatic arthritis 

 

Both rheumatoid arthritis (RA) and psoriatic arthritis (PsA) are chronic, immune-

mediated disorders associated with arthritis and the inflammation of joints. The 

prevalence of RA is around 0.5-1.0% in developed countries and is higher in women 

compared to men [1]. The prevalence of PsA ranges between 0.16-0.25% and affects 20-

30% of patients with psoriasis [2,3]. 

RA and PsA have some similarities in immunopathogenesis and symptoms as 

well, although there are also differences between them. In both diseases innate and 

adaptive immune responses are also involved, however, activated T cells and 

macrophages play a key role in the pathophysiology of PsA [4], and T cells and B cells 

of RA [5]. 

In RA fibroblasts, leukocytes and endothelial cells are the characteristic cellular 

elements of inflammation by producing inflammatory mediators, angiogenetic factors and 

enzymes. B-cells secrete auntoantibodies (RF, anti-CCP), while the ratio of T-cells is 

changed, therefore the ratio of inflammatory cytokines produced by T-cells is also 

changed. As inflammation progresses, cartilage and bone tissue are also damaged because 

of proteolytic enzymes, activation of the complement system, autoantibodies and soluble 

inflammatory factors [6–8]. 

In the patogenesis of PsA macrophages, granulocytes and T-cells with altered 

function play a significant role. IL-23 is mostly produced by macrophages, NK-cells and 

T-cells, and as a result, Th17 cells produce IL-17. This cytokine with other synergistic 

cytokines can activate osteoclasts and synovial fibroblasts in the joint, triggers increased 

recycling of epidermal cells in the skin, and triggers cytokine production by keratinocytes 

[9]. 

The role of inflammatory cytokines is important in both diseases. IL-1, IL-6, and 

TNF-α (tumor necrosis factor) cytokines are the most significant cytokines in RA, and 

IL-17, IL-23, and TNF-α are in PsA [10]. IL-6 stimulates osteoclasts RANK-L 

https://paperpile.com/c/F6Midp/xwCo
https://paperpile.com/c/F6Midp/1Z4Z+20vy
https://paperpile.com/c/F6Midp/X5R3
https://paperpile.com/c/F6Midp/3g4n
https://paperpile.com/c/F6Midp/1UnE+ZalM+qvQl
https://paperpile.com/c/F6Midp/ACzW
https://paperpile.com/c/F6Midp/jfH0
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dependently [11], IL-17A inducates RANK-L and prostaglandin syntesis [12,13], IL-23 

triggers the maturation of T-helper 17 cells, which stimulates osteoclastogenesis through 

IL-17 and RANK-L expression [14], while TNF-α increases RANK and c-Fms (colony-

stimulating factor 1 receptor) expression, so it also has an osteoclastogenic effect [15]. 

 Predisposing genetic factors are also important in both diseases. For example the 

presence of HLA-B27 and HLA-DR4 alleles increases the risk of PsA, while the presence 

of the HLA-DRB1 allele and single nucleotide polymorphism of the PTPN22 gene was 

identified to be associated with the susceptibility to RA [16,17]. 

Several co-morbidities are associated with immune-mediated inflammatory 

diseases, also with RA and PsA. In the case of some cardiovascular diseases, the hazard 

ratio (HR) was increased in RA (HR=1.39) and PsA (HR=1.24) as well [18]. The risk of 

some malignancies [19,20], non-alcoholic fatty liver disease (NAFLD) [21], depression, 

and anxiety co-morbidities is also increased in patients suffering from RA or PsA [22]. 

Disease-modifying anti-rheumatoid drugs (DMARDs), eg. methotrexate and 

leflunomide are effective first-line medications in the treatment of both RA and PsA [16], 

as well as non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids [23]. 

Biological therapeutical drugs that are targeting specific molecules of the inflammatory 

pathways are being used from the early 21st century in parenteral administration. TNF-α 

inhibitors (TNFi), like etanercept, infliximab, adalimumab, golimumab, and 

certolizumab-pegol drugs are used in both RA and PsA [24,25]. Ustekinumab [26], which 

targets IL-12/IL-23 cytokines, and secukinumab [27], which targets IL-17 cytokines are 

used in the treatment of PsA. An IL-1 receptor antagonist - anakinra [28] -, a T-cell 

activation inhibitor - abatacept [29] -, an inhibitor of CD20, which is expressed by B-cells 

- rituximab [30] -, and an IL-6 receptor inhibitor - tocilizumab [31] - are biological 

therapeutical drugs approved for the treatment of RA. Small molecule non-biological 

agents, which target intracellular signaling pathways, and are administered orally are the 

newest drugs in this field, and being used since last decade. The specific inhibitor of 

Janus-associated kinases (JAK) 1 and 3, tofacitinib was first approved for the treatment 

of moderate-to-severe RA, then the indications were expanded to PsA and some other 

immune-mediated diseases also [32]. Apremilast, which inhibits the PDE-4 enzyme is 

used in the treatment of PsA [33] (Table 1). 

 

https://paperpile.com/c/F6Midp/FYjE
https://paperpile.com/c/F6Midp/HH36+VZRC
https://paperpile.com/c/F6Midp/PFen
https://paperpile.com/c/F6Midp/vg29
https://paperpile.com/c/F6Midp/jdfQ+CIo7
https://paperpile.com/c/F6Midp/4qBr
https://paperpile.com/c/F6Midp/GPXm+t0lm
https://paperpile.com/c/F6Midp/ZwUZ
https://paperpile.com/c/F6Midp/m6rf
https://paperpile.com/c/F6Midp/jdfQ
https://paperpile.com/c/F6Midp/jEHZ
https://paperpile.com/c/F6Midp/0H6u+djAp
https://paperpile.com/c/F6Midp/cclw
https://paperpile.com/c/F6Midp/eLxL
https://paperpile.com/c/F6Midp/KfYE
https://paperpile.com/c/F6Midp/3OJJ
https://paperpile.com/c/F6Midp/Jk0u
https://paperpile.com/c/F6Midp/Pgtj
https://paperpile.com/c/F6Midp/YU6m
https://paperpile.com/c/F6Midp/WBX0
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Table 1 Some therapeutical agents, which are approved and used for the treatment of 

RA and/or PsA. (Own figure) 

 

 

 

 

1.2 Osteoclasts  

 

 Activation of the bone-resorbing cells, the osteoclasts are increased in both RA 

and PsA inflammatory arthropathies, resulting in local and systemic bone loss. Therefore 

investigation of osteoclasts in these diseases is important for a better understanding of the 

pathomechanism of RA and PsA. 

 In vertebrates, bone tissue has several basic, essential functions in maintaining the 

body's homeostasis. It provides mechanical stability and framework of the body, 

participates in the mechanism of displacement, protects internal organs - the central 

nervous system and chest organs -, borders the bone marrow where hematopoiesis occurs, 

and stores minerals and fat, thereby regulating the homeostasis of minerals [34]. In 

addition bone tissue also has significant effects on immune homeostasis [35]. Bone 

building and bone breakdown take place simultaneously for a lifetime, and bone tissue is 

Rheumatoid 

arthritis

Psoriatic 

arthritis

IL-1 R inhibitor;  anakinra

T-cell activation inhibitor; 

abatacept

CD20 inhibitor; rituximab

IL-6 R inhibitor; tocilizumab

baricitinib, filgotinib apremilast

tofacitinib, upadacitinib

IL-17A inhibitor; 

secukinumab

IL-12/IL-23p40 

inhibitor; 

ustekinumab

DMARDs

methotrexate, leflunomide

NSAIDs, corticosteroids

Biological therapy

TNF-α inhibitors; etanercept, infliximab, 

adalimumab, golimumab, certolizumab-pegol

Small molecule non-biological agents

https://paperpile.com/c/F6Midp/aa2I
https://paperpile.com/c/F6Midp/G3Yr
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completely renewed every 7-10 years [36]. Two types of cells are involved in the constant 

remodeling of bone tissue; osteoclasts break down bone, while osteoblasts build new bone 

[37]. 

Osteoclasts are formed from bone marrow-derived hematopoietic progenitor cells 

which are committed in granulocyte/monocyte/macrophage direction and express CD14 

[38]. The presence of macrophage colony-stimulating factor (M-CSF) produced by 

osteoblasts is essential for the differentiation and activation of osteoclasts [39]. 

Osteoblasts promote osteoclastogenesis not only by secretion of soluble cytokines but 

also by direct cell-cell contact. The integrant membrane protein on the surface of 

osteoblasts, receptor activator of nuclear factor κB ligand (RANKL), binds to the receptor 

activator of nuclear factor κB (RANK), which is expressed on many progenitors of 

osteoclasts and the osteoclasts themselves. The RANK-RANKL signaling is the most 

important factor in osteoclast differentiation, but other soluble cytokines and T-cells are 

also essential [40,41]. Osteoprotegerin (OPG) is a soluble factor released by osteoblasts, 

which binds RANKL and prevents the binding of RANK to RANKL [42]. In the presence 

of M-CSF osteoclast precursor cells are formed from granulocyte-macrophage progenitor 

(GMP) cells. Osteoclast precursor cells differentiate into mononuclear prefusion 

osteoclasts in the presence of M-CSF and RANKL, which then fuse into multinuclear 

osteoclasts [43]. In addition to promoting differentiation, RANKL is also essential in the 

activation and survival of osteoclasts [44,45] (Figure 1). In vitro circumstances using M-

CSF and RANKL recombinant growth factors and adherent conditions are also required 

for osteoclastogenesis [46]. 

 

https://paperpile.com/c/F6Midp/5Q8e
https://paperpile.com/c/F6Midp/jPeI
https://paperpile.com/c/F6Midp/7DB8p
https://paperpile.com/c/F6Midp/9XhC
https://paperpile.com/c/F6Midp/kHoAq+dFnrn
https://paperpile.com/c/F6Midp/rAmL
https://paperpile.com/c/F6Midp/d1S6b
https://paperpile.com/c/F6Midp/U9GI0+dUfMm
https://paperpile.com/c/F6Midp/FB2Nt
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Figure 1 The process of osteoclast differentiation and its positive and negative 

regulators. (Own figure) 

 

The activation of osteoclasts is decreased in osteopetrosis, while the number of 

osteoclast precursors is elevated during estrogen deficiency leading to osteoporosis as 

well as bone metastasis of tumors and inflammatory diseases. Hence the close connection 

between the bone tissue and the immune system, inflammatory procedure fosters 

pathological bone destruction via osteoclast activation. During inflammation, the amount 

of pro-inflammatory TNF and RANKL produced by T-cells is elevated. Consequently, 

bone loss consorts many autoimmune diseases for example RA or PsA. 

 

 

1.3 Mass spectrometry 

 

Mass spectrometry (MS)-based proteomics techniques are widely used for the 

identification and quantification of proteins expressed in complex biological samples. 

There are some published articles regarding the proteomics of osteoclast precursor cell 

lines [47–53]. Total proteins from undifferentiated RAW264.7 cells 

https://paperpile.com/c/F6Midp/McMg6+u6HRv+omWVw+4N7Wt+Z0mas+Fo9Rl+h8Ok4
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(monocyte/macrophage osteoclastogenesis model cell line), committed preosteoclasts 

(day 2), and differentiated osteoclasts (day 3) were studied and the temporary up-

regulation pattern of metallocarboxypeptidase family member CPX-1 expression was 

identified to might be essential for osteoclast development from preosteoclasts [49]. Mice 

origin bone marrow macrophage (BMM) cell culture as preosteoclasts and osteoclasts 

(day 3) differentiated from BMM cells were also analyzed by mass spectrometry. The 

vacuolar-type H+-ATPase (V-ATPase) proton pump is found in the ruffled border plasma 

membrane of osteoclast cells, and its function is to translocate protons from the 

osteoclasts to the resorption lacunae resulting in a 4.5 pH, which is an energy-intensive 

process. The important role of lipid rafts during osteoclastogenesis in regulating the 

activity of V-ATPase in osteoclasts was described [54]. TNF receptor-associated factor 6 

(TRAF6) has an important role in osteoclast activation. V-ATPase was identified as a 

TRAF6-binding protein and both molecules were confirmed to be essential for osteoclast 

function during the analysis of mice origin BMM cells and their differentiate and 

stimulated RAW264.7 cell lines (day 4) as well [48]. The proteomics of isolated 

monocytes from peripheral blood was also examined [55–57]. Nevertheless, as far as we 

know, there was no published data regarding the proteome of human blood-derived 

preosteoclasts and osteoclasts and there was little information about the molecular 

changes during human blood-derived osteoclast differentiation. 

 

 

1.4 Extracellular vesicles 

 

 

 Extracellular vesicles (EV) are subcellular structures surrounded by a 

phospholipid bilayer membrane and are actively released by all cells in an evolutionarily 

conserved manner. EVs can be divided into three major groups based on their biogenesis 

and size. Large-sized EVs (lEV) are formulas of 1-5 µm generated during programmed 

cell apoptosis [58]. Medium-sized EVs (mEV) are plasma membrane-derived vesicles 

with a diameter of 100-1000 nm, while small-sized EVs (sEV) are structures with 

endosomal markers formed by exocytosis of multivesicular bodies with a diameter of 50-

100 nm [59–61]. EVs are complex biomarkers since they may carry various proteins, 

https://paperpile.com/c/F6Midp/omWVw
https://paperpile.com/c/F6Midp/Xqduj
https://paperpile.com/c/F6Midp/u6HRv
https://paperpile.com/c/F6Midp/huHp3+Ho7uG+NoK8L
https://paperpile.com/c/F6Midp/bift
https://paperpile.com/c/F6Midp/lWYiS+8dbh+AtOM
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lipids, or nucleic acids including RNAs [62], microRNAs [63,64], and other small non-

coding RNAs and DNAs [65] on their surface and interior as well (Figure 2). 

 

 

 

Figure 2 Size, biogenesis, and structure of extracellular vesicles. (Own figure) 

 

EVs play an important role in intercellular communication as “vectorial 

signalosomes'' [66]. Their roles include antigen presentation, immunosuppression, or 

immune activation. Among others, they play a role in neuron-astrocyte communication 

as well [67] and perform a protective function by preventing the accumulation of amyloid 

β-proteins [68]. During fertilization, they play a key role in the delivery of lipids 

transported by seminal EVs to sperm [69,70]. EVs in saliva play an important role in 

wound healing based on tissue factor-initiated coagulation [71]. EVs are enriched in 

innate immune proteins, which, in addition to antimicrobial proteins, also have bacterial 

and viral receptors that are suitable to prevent the entry of microorganisms into the body 

[72]. The role of EVs in e.g. coagulation and cell homeostasis is also a much-studied field. 

In addition to their physiological roles, EVs may also play an important role in 

several pathological conditions [73]. As complex signal carriers, EVs have increasingly 

recognized biomarkers of several inflammatory and malignant diseases [74–77]. They 

may even play a role in the diagnosis, prognosis, or prediction of certain diseases in the 

future [78]. In some organ-specific and systemic autoimmune diseases, more platelet-

derived mEVs have been identified than in healthy controls. It has been described in RA, 

https://paperpile.com/c/F6Midp/rVICf
https://paperpile.com/c/F6Midp/dELrT+u027n
https://paperpile.com/c/F6Midp/De9m1
https://paperpile.com/c/F6Midp/TzHs
https://paperpile.com/c/F6Midp/f88r
https://paperpile.com/c/F6Midp/TwZ0
https://paperpile.com/c/F6Midp/YzOy+vEzJ
https://paperpile.com/c/F6Midp/LbXs
https://paperpile.com/c/F6Midp/8SCA
https://paperpile.com/c/F6Midp/asqx6
https://paperpile.com/c/F6Midp/hrX3u+eIeqj+0eELs+GGIPN
https://paperpile.com/c/F6Midp/Ak9y
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systemic lupus erythematosus (SLE), and Sjögren's syndrome, among others [79]. 

Vesicles examined in RA and juvenile idiopathic arthritis (JIA) were isolated from the 

synovial fluid produced by the inner layer of the joint capsule, promoting frictionless 

displacement of the joint ends. The sEVs derived from synovial fluid accumulate 

citrullinated proteins that are produced during pathological metabolic processes and are 

likely to play a role in the autoimmune inflammatory process in the joints. The presence 

of these autoantigens in EVs suggests that EVs may play an important role in autoimmune 

processes. It has also been observed that EVs from synovial fluid bind to IgG and IgM 

immune complexes [80]. In addition to autoantigens, a mammalian phosphoprotein called 

nuclear DEK was also found in EVs derived from synovial macrophages. This indicates 

the role of EVs in arthritic inflammatory processes [81]. A correlation was also found 

between disease duration and the number of platelet-derived EVs. Respectively, the 

amount of EVs in the synovial fluid was not related to the number of cells, so it is possible 

that cell activation rather than cell number plays a significant role in the formation of EVs 

[82,83]. In addition to autoimmune diseases, the role of EVs was also examined in 

cardiovascular diseases [84–90], metabolic syndrome [91], obstructive sleep apnea [92], 

sepsis [93], sickle cell anemia [94], in Alzheimer's disease [95], in kidney disease [96], 

and malignant tumors [97–99]. 

 EVs are also promising therapeutic tools in malignant growth [100], gene therapy 

[101], and the targeted delivery of drug molecules [102].  

 Due to the potentially important role of EVs in inflammatory processes, and also 

due to the therapeutical potency of these subcellular structures, the investigation of EVs 

in rheumatological diseases is significant. 

 

 

  

https://paperpile.com/c/F6Midp/ychM
https://paperpile.com/c/F6Midp/NnAh
https://paperpile.com/c/F6Midp/b2gH
https://paperpile.com/c/F6Midp/EF0r+KyFp
https://paperpile.com/c/F6Midp/yPJX+6122+xPdi+2Sei+nLai+ew6J+g4A7
https://paperpile.com/c/F6Midp/PBTy
https://paperpile.com/c/F6Midp/BpA7
https://paperpile.com/c/F6Midp/Nnal
https://paperpile.com/c/F6Midp/wOod
https://paperpile.com/c/F6Midp/vLAp
https://paperpile.com/c/F6Midp/qBkN
https://paperpile.com/c/F6Midp/gOdg+KPWd+Kz6S
https://paperpile.com/c/F6Midp/nwBB
https://paperpile.com/c/F6Midp/icWT
https://paperpile.com/c/F6Midp/TOAk
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2. OBJECTIVES 

 

 

 

The main objectives of our work were as follows.  

 

 

● To analyze proteomic dynamic changes during osteoclast differentiation both in 

healthy donors and in RA and PsA patients. 

 

○ To differentiate preosteoclasts and osteoclasts in vitro from monocytes 

derived from blood samples of healthy donors, and RA and PsA patients. 

 

○ To analyze the protein expression of monocyte, the in vitro differentiated 

preosteoclast, and osteoclast samples. 

 

 

● To investigate the effect of sEV on human in vitro osteoclastogenesis and the 

mechanism of action of EVs on osteoclastogenesis in vitro. 

 

○ To investigate the effect of human blood-derived and SEC (size exclusion 

chromatography) purified sEV treatment on human in vitro 

osteoclastogenesis. 

 

○ To analyze sEV and mEV samples of healthy donors and RA and PsA 

patients. 
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3. RESULTS 

 

 

 

3.1. Analysis of proteomic dynamic changes during osteoclast differentiation both in 

healthy donors and in RA and PsA patients 

 

 

3.1.1. Experimental design setup 

 

To analyze the proteomic changes of osteoclast differentiation, a detailed 

experimental system was applied. Peripheral blood samples of healthy donors (n=6) and 

RA (n=6) and PsA (n=6) patients were collected. PBMCs were isolated via a Ficoll 

density gradient, then CD14+cells - monocytes - were isolated from PBMCs, and cultured 

in vitro. (Polymorphonuclear leukocytes, which also express CD14 marker, were settled 

under the polymer after centrifugation.) After 5 days of differentiation on tissue culture-

treated plates in the presence of recombinant M-CSF and RANK-L cytokines, 

preosteoclasts, and after 9 days, osteoclasts were collected. Lysed and digested samples 

were separated with nano HPLC (high-performance liquid chromatography) technique, 

then analyzed with tandem mass spectrometry (MS/MS) method. Data were analyzed to 

gather qualitative and quantitative results as well (Figure 3). A total of 1435 proteins 

were identified in the 54 sample. 
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Figure 3 Experimental design setup. After differentiation of preosteoclasts and 

osteoclasts from human blood-derived monocytes, samples were collected, prepared, 

and analyzed by nano HPLC-MS/MS, finally, data were examined. Source: Kovács OT 

et al. [103] 

 

 

3.1.2. PCA analysis and Volcano plot represent protein expression differences of 

samples during differentiation 

 

To get an answer to the question of which parameters affect mostly the protein 

expression changes between samples, principal component analysis (PCA) was carried 

out. K-means clustering algorithm and adjusted Rand score index were used for 

quantification [104] and showed that different cell types of the differentiation had a 

significant effect on the clustering of the samples, however, gender and diagnosis had no 

effect. This reveals that samples with different stages of differentiation differ from each 

other. Our data indicate that preosteoclasts and osteoclasts separate from monocytes more 

than preosteoclast from osteoclasts. Volcano plot analysis also represents this finding by 

plotting the expression changes against the log p values (Figure 4). These observations 

are in accordance with that monocytes first differentiate into preosteoclasts, and then into 

osteoclasts during osteoclast development.  

https://paperpile.com/c/F6Midp/ewCu
https://paperpile.com/c/F6Midp/Cqtg
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Figure 4 Monocyte, preosteoclast and osteoclast samples of healthy, RA and PsA 

donors differ from each other mostly based on their cell type. PCA analysis of samples 

based on A: cell stages, B: gender, and C: diagnosis. Volcano plot analysis of D: 

osteoclast vs. monocyte, E: preosteoclast vs. monocyte, and F: osteoclast vs. 

preosteoclast. The horizontal line indicates an adjusted p-value of 0.05. Source: Kovács 

OT et al. [103] 

 

 

https://paperpile.com/c/F6Midp/ewCu


18 

 

Figure 5 Samples did not differ from each other based on laboratory parameters, disease 

activity scores, or duration of disease. PCA analysis of samples based on A: rheumatoid 

factor (RF), B: anti-cyclic citrullinated peptide autoantibody (anti-CCP), C: C-reactive 

protein (CRP), D: erythrocyte sedimentation rate (ESR), E: disease activity scores, F: 

duration of disease. Source: Kovács OT et al. [103] 

 

 

 

https://paperpile.com/c/F6Midp/ewCu
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Besides gender and diagnosis, neither the laboratory parameters (RF, anti-CCP, 

CRP, or ESR), disease activity scores, or duration of disease had any significant effect on 

the clustering of samples (Figure 5). 

 

 

3.1.3. Protein expression pattern of cell types changes during differentiation in case of 

cellular location and cell function 

 

Next, with the use of the Uniprot database, a comparison of localization 

information of all detected proteins of each sample was carried out. Most of the detected 

proteins were localized in the cytoplasm, cell membrane, endoplasmic reticulum (ER), 

nucleus, and mitochondria (Figure 6). Then we compared the expression changes of 

proteins in pairs of samples. The expression of mitochondrial proteins and apical proteins 

was increased, while the expression of nuclear proteins and secreted proteins were 

decreased in osteoclast samples compared to monocyte samples (Figure 7). These 

findings are in accordance with that the process of bone resorption needs high energy, and 

that monocytes secrete various immunological proteins.  

As a next step, Gene Set Enrichment Analysis (GSEA) on the differential 

expression (DE) data of all examined samples was carried out based on the localization 

of proteins (GO cellular compartment, GO-CC) (Figure 8) and biological processes they 

are involved in (GO biological processes, GO-BP) (Figure 9) [105,106]. The expression 

of variant secretory vesicle proteins and proteins of major histocompatibility complex 

(MHC) was decreased, while the expression of proteins localized to the basolateral 

membrane and ribosomal proteins was increased in osteoclast and preosteoclast samples 

compared to monocyte samples (Figure 8). Furthermore, the expression of proteins 

involved in osteoclast differentiation and carbohydrate metabolism biological processes 

was increased in osteoclast samples compared to monocyte samples. Nevertheless the 

expression of proteins involved in diverse immune functions - e.g. migration, cytokine 

production, and immune responses - was decreased (Figure 9). 

 

https://paperpile.com/c/F6Midp/MocC+zVDj
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Figure 6 Bar graph represents the protein distribution of whole quantified proteins in 

cellular location. Source: Kovács OT et al. [103] 

 

 

Figure 7 Heat map represents the protein expression differences of monocytes, 

preosteoclasts, and osteoclasts in cellular location according to the Uniprot database. 

Not all pathways are indicated on the graph. Source: Kovács OT et al. [103] 

https://paperpile.com/c/F6Midp/ewCu
https://paperpile.com/c/F6Midp/ewCu
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Figure 8 Protein expression changes during osteoclastogenesis in case of cellular 

location. The heat map represents the protein expression differences of cell types in 

cellular location analyzed with GSE using GO: CC terms. Not all pathways are 

indicated on the graph. Source: Kovács OT et al. [103] 

 

https://paperpile.com/c/F6Midp/ewCu
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Figure 9 Protein expression changes during osteoclastogenesis in case of cell function. 

The heat map represents the protein expression differences of cell types according to 

cell function analyzed with GSE using GO: BP terms. Not all pathways are indicated on 

the graph. Source: Kovács OT et al. [103] 

 

 

3.1.4. Metabolic demands are elevated, while the antibacterial function is decreased 

in osteoclasts 

 

Next, two biological processes were selected from the above-described data 

(Figure 9). Monosaccharide metabolic processes are enhanced, while defense response 

to bacterium pathway is decreased in osteoclast samples altogether compared to monocyte 

samples altogether (Figure 10 and Figure 11). This is in line with that in secretory 

osteoclasts metabolic demands are elevated, while the antibacterial function is decreased 

during the transition from monocytes to these cells. 

https://paperpile.com/c/F6Midp/ewCu
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Figure 10 Metabolic demands are elevated in osteoclasts. A: Density curve and 

individual protein DE log2 values of protein expressions represent identified proteins of 

the monosaccharide metabolic process pathway in osteoclasts. B: Illustration represents 

the most significantly expressed proteins involved in the same pathway in osteoclasts 

compared to monocytes. Red text box filling means the protein was upregulated, and 

blue text box filling means the protein was downregulated in osteoclast samples 

compared to monocyte samples. Source: Kovács OT et al. [103] 

 

 

https://paperpile.com/c/F6Midp/ewCu
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Figure 11 Antibacterial function pathway is increased in monocytes. A: Density curve 

and individual protein DE log2 values of protein expressions represent identified 

proteins of the defense response to bacterium pathway in osteoclasts. B: Illustration 

represents the most significantly expressed proteins involved in the same pathway in 

monocytes compared to osteoclasts. Red text box filling means the protein was 

upregulated, and blue text box filling means the protein was downregulated in monocyte 

samples compared to osteoclast samples. Source: Kovács OT et al. [103] 

 

 

 

 

 

https://paperpile.com/c/F6Midp/ewCu
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3.1.5. Largest protein expression changes between osteoclast and monocyte samples 

 

Next, the largest protein expression (over 10 fold DE) changes between all 

osteoclast and all monocyte samples were represented. Most of these proteins have been 

previously described as being characteristic in osteoclasts or monocytes. Proteins 

upregulated in osteoclast samples are connected mostly to processes that are essential for 

osteoclast function such as metabolism or bone resorption activity. Iron is a Krebs cycle 

activator, so transferring iron to the mitochondria is an essential step in the activation of 

tricarboxylic acid (TCA) processes. Transferrin receptor protein 1 - which shows the 

highest expression difference in healthy osteoclasts - transfers iron into the mitochondria, 

thus is essential in osteoclast differentiation, and it is a positive osteoclastogenic feedback 

loop generator. Iron uptake also increases actin ring formation, thus promoting mature 

osteoclast function as well [107]. From the electron transport chain (ETC) ATP is formed 

by oxidative phosphorylation. Creatine kinase B-type catalyzes the transfer of phosphate 

between phosphagens and ATP, thus having a key role in the high energy demand 

processes, such as bone resorption [51,108]. Several subunits of V-ATPase were detected 

in large quantities in osteoclast samples. Sodium/hydrogen exchanger 9B2 is a Na+/H+ 

antiporter that besides V-ATPase also regulates the pH [109,110]. Macrophage mannose 

receptor 1 plays a role in osteoclast fusion [111,112], Cathepsin B is secreted to the 

resorption lacunae and has an important role in bone resorption as enhancing the activity 

of other proteases [113]. Cystatin-B inhibits cysteine cathepsins such as cathepsin K, L, 

H, and B, thus playing a key role in osteoclast homeostasis as a negative regulator 

[114,115]. Cathepsin K is also secreted to the resorption lacunae from the lysosome and 

is involved in extracellular matrix degradation [116]. Cathepsin K is an important 

osteoclast biomarker and therapeutic target as well. Lysosomal acid phosphatase is a 

hydrolytic lysosomal enzyme also secreted to the resorption lacunae [117]. TYRO protein 

tyrosine kinase-binding protein plays an important role in signal transduction in osteoclast 

cells [118]. To create the occlusion zone, and therefore promote the formation of the 

Howship-lacunae αvβ3 integrins, such as Integrin alpha-V are essential [119] (Figure 

12). These results show, that our data are in line with the osteoclast characteristics 

previously described. 
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Figure 12 Overexpressed proteins in osteoclast samples altogether. The illustration 

represents proteins overexpressed by osteoclast samples compared to monocyte samples 

(own illustration). Source: Kovács OT et al. [103] 

 

 

Proteins downregulated in osteoclast samples are connected mostly to 

immunological processes - such as immune responses (e.g. complement receptor type 1, 

mast cell-expressed membrane protein 1, protein S100-A8, protein S100-A9, 

myeloperoxidase, neutrophil elastase, and myeloblastin) or inflammatory processes (e.g. 

protein S100-A8, neutrophil elastase, and myeoblastin). Neutrophil defensin 1 and 

interferon-induced transmembrane protein 2 have an antiviral effect, while lysozyme C, 

neutrophil defensin 1, cathelicidin antimicrobial peptide, and cathepsin G have an 

antimicrobial effect. Haptoglobin also has an antibacterial effect in addition to binding 

hemoglobin. Complement receptor type 1, and interferon-induced transmembrane protein 

2 have a role in innate immunity, immunoglobulin kappa constant protein in adaptive 

immunity, and ficolin-1 in both innate and adaptive immunity (Figure 13). 

https://paperpile.com/c/F6Midp/ewCu


27 

 

Figure 13 Downregulated proteins in osteoclast samples altogether. The drawing 

represents proteins overexpressed by monocyte samples compared to osteoclast samples 

(own illustration). Source: Kovács OT et al. [103] 

 

 

3.1.6. Largest protein expression changes during osteoclastogenesis 

 

Next, we have checked the largest protein expression (over 10 fold DE) changes 

between all monocyte, preosteoclast and osteoclast samples using heat map analysis. The 

expression of the above described proteins (Figure 12 and Figure 13) is depicted in all 

samples. In the first column we can see the protein expression of osteoclasts compared to 

monocytes and in the second column the protein expression of preosteoclasts compared 

to monocytes. Yellow color represents higher protein expression, while blue color 

represents lower protein expression. White filling means the particular protein was not 

detected in that sample. 

 

https://paperpile.com/c/F6Midp/ewCu
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Figure 14 Largest protein expression changes during osteoclast differentiation. The heat 

map represents the largest protein expression differences of cell types. (Own figure) 

 

 

3.1.7. The more the cells are developed, the bigger the protein expression profile 

differences are between healthy, RA, and PsA samples 

 

When all sample data were analyzed with PCA analysis, the diagnosis had no 

significant effect on the clustering of the samples (Figure 4C). As activation of 

osteoclasts is increased in inflammatory arthropathies, such as RA and PsA, next we 

compared osteoclast samples of healthy donors and RA, and PsA patients using PCA 

analysis. We also compared monocyte and preosteoclast samples apart based on the 

diagnosis. Surprisingly, in the case of osteoclast samples, there was a clustering of 

healthy, RA, and PsA samples, and the extent of the separation was increased during 

differentiation (Figure 15). This suggests that taking blood from healthy donors and RA 

and PsA patients, then isolating monocytes from blood samples, then differentiating the 

cells in vitro under the same circumstances results in healthy and unhealthy osteoclast 

samples with different protein expression profiles.  
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Figure 15 Healthy and unhealthy samples vary mostly from each other when the cells 

are fully differentiated. PCA analysis of A: monocyte samples, B: preosteoclast 

samples, and C: osteoclast samples based on the diagnosis. Source: Kovács OT et al. 

[103] 

 

 

3.1.8. Both in RA and PsA osteoclast samples, the expression of proteins involved in 

immunological processes is increased and in metabolic processes is decreased 

 

As a next step, GSEA was carried out on the DE data of osteoclast samples of 

healthy donors and RA and PsA patients, since PCA analysis showed the largest 

differences between osteoclast samples. Interestingly, there are significant protein 

expression differences between healthy, RA, and PsA osteoclasts in regards to GO-CC 

(Figure 16 and Figure 18) and GO-BP (Figure 17 and Figure 19) analysis results. The 

expression of proteins involved in immunological processes (Figure 17 and Figure 19) 

and proteins of the MHC complex (Figure 16 and Figure 18) was increased both in RA 

and PsA osteoclasts compared to healthy osteoclasts. The expression of proteins involved 

in lipid metabolic processes was also increased in PsA osteoclasts compared to healthy 

osteoclasts (Figure 19). The expression of proteins involved in metabolic processes was 

decreased both in RA and PsA osteoclast samples compared to the healthy ones (Figure 

17 and Figure 19).  

 

 

 

https://paperpile.com/c/F6Midp/ewCu
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Figure 16 Protein expression differences of healthy, RA, and PsA osteoclast samples. 

Heat map represents GSEA analysis based on GO-CC. Osteoclast samples of RA 

patients are compared to healthy ones. Source: Kovács OT et al. [103] 

 

https://paperpile.com/c/F6Midp/ewCu
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Figure 17 Protein expression differences of healthy, RA, and PsA osteoclast samples. 

Heat map represents GSEA analysis based on GO-BP. Osteoclast samples of RA 

patients are compared to healthy ones. Source: Kovács OT et al. [103] 

 

https://paperpile.com/c/F6Midp/ewCu
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Figure 18 Protein expression differences of healthy, RA, and PsA osteoclast samples. 

Heat map represents GSEA analysis based on GO-CC. Osteoclast samples of PsA 

patients are compared to healthy ones. Source: Kovács OT et al. [103] 

 

https://paperpile.com/c/F6Midp/ewCu
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Figure 19 Protein expression differences of healthy, RA, and PsA osteoclast samples. 

Heat map represents GSEA analysis based on GO-BP. Osteoclast samples of PsA 

patients are compared to healthy ones. Source: Kovács OT et al. [103] 

 

 

3.1.9. Osteoclast samples of unhealthy donors might keep a few immunological 

functions during differentiation 

 

Next, digging deeper, four biological processes were selected from the above-

described data (Figure 17 and Figure 19). ATP biosynthetic processes pathway is 

decreased, while regulation of T-cell mediated cytotoxicity pathway is increased in RA 

osteoclast samples compared to healthy osteoclast samples (Figure 20). Cytoplasmic 

translation processes are decreased, while positive regulation of adaptive immune 

response pathway is increased in PsA osteoclast samples compared to healthy ones 

(Figure 21). These results suggest, that osteoclasts differentiated from monocytes derived 

from patients suffering from RA or PsA keep some immunological functions in contrast 

with healthy osteoclasts.  

https://paperpile.com/c/F6Midp/ewCu
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Figure 20 T-cell mediated cytotoxicity pathway is increased in RA osteoclast samples. 

The illustration represents the most significantly expressed proteins involved in the ATP 

biosynthetic processes pathway and T-cell mediated cytotoxicity pathway in RA 

osteoclasts compared to healthy osteoclasts. Red filling means the protein was 

upregulated, and blue text box filling means the protein was downregulated in RA 

osteoclast samples compared to healthy osteoclast samples. Source: Kovács OT et al. 

[103] 

 

 

 

https://paperpile.com/c/F6Midp/ewCu
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Figure 21 Positive regulation of adaptive immune response pathway is increased in PsA 

osteoclast samples. The illustration represents the most significantly expressed proteins 

involved in the cytoplasmic translation processes and positive regulation of the adaptive 

immune response pathway in PsA osteoclasts compared to healthy osteoclasts. Red text 

box filling means the protein was upregulated, and blue filling means the protein was 

downregulated in PsA osteoclast samples compared to healthy osteoclast samples. 

Source: Kovács OT et al. [103] 
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3.2. The effect of sEV on human in vitro osteoclastogenesis  

 

 

3.2.1. The effect of SEC purified sEV treatment on human in vitro osteoclastogenesis 

 

 Blood samples were taken from healthy donors (n=2), then platelet-free plasma 

(PFP) was isolated from the blood. PFP was filtered by gravitation through a 0.8 μm filter. 

Then the size exclusion chromatography was used for purification by using qEV Size 

Exclusion Columns according to the manufacturer’s instructions. Finally, the samples 

were ultracentrifuged by 120.000 g for 16 h at 4 ⁰C and the sediment was resuspended in 

1*PBS. SEC purified sEV and control PBS samples were added to human in vitro 

differentiation osteoclast cultures (from the same donors). SEC purified sEV treatment 

significantly inhibited in vitro osteoclastogenesis as the number of osteoclasts (TRAP 

stained cells with at least 3 nuclei) was significantly less in sEV-treated wells (p < 0.05) 

(Figure 22).  

 

 

Figure 22 SEC purified sEV treatment inhibited human in vitro osteoclastogenesis. 

Columns represent the mean ± SEM, n=2, *: p < 0.05. Source; Marton N et al. [120] 

 

 

 

https://paperpile.com/c/F6Midp/2yk7D
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3.2.2. Differential detergent lysis of mEV samples 

 

 The mEV samples were taken in Annexin V (AV) Binding Buffer or 1*PBS. 

Samples were incubated with Annexin V-FITC antibody for 30 min at room temperature 

in the dark and then analyzed on a FACSCalibur flow cytometer. Differential detergent 

lysis was performed on mEV samples using 0.1% Triton X-100 [121]. The phenomenon 

is based on the fact that the membrane of mEVs is disorganized by detergent. Events that 

can be registered even after lysis can be immune complexes or protein aggregates. 

Samples were thoroughly resuspended and vortexed and incubated for 30 seconds after 

the addition of 0.1% Triton X-100, then the samples were reweighed. Significantly fewer 

AV positive events were measured at the mEV gate after Triton X-100 treatment. The 

mEVs are detergent sensitive, so the difference in the number of events before and after 

the addition of Triton X-100 gives the number of mEVs. Therefore, only events that 

disappeared after the detergent was added were considered mEV, so the post-detergent 

event number at the mEV gate was subtracted from the pre-detergent event number. For 

mEV samples, the gate was determined with BioCytex MegaMix beads and was 

optimized with 1 μm Silica Beads Fluo-Green. Results were evaluated using FlowJo 

software (Figure 23). 

 

 

Figure 23 Differential detergent lysis of mEV samples. FL = fluorescent axis, AV = 

annexin V.  Source: Marton N et al. [120] 

https://paperpile.com/c/F6Midp/07pYl
https://paperpile.com/c/F6Midp/2yk7D
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3.2.3. Analysis of sEV and mEV samples by flow cytometry 

 Blood was taken from healthy (n=4) donors and RA (n=3) and PsA (n=3) patients. 

From blood samples, mEV and sEV samples were isolated by differential centrifugal (2 

times 20.500 g and 100.000 g) and filtration steps. The expression of two important 

markers influencing osteoclastogenesis - OPG and RANKL - of sEV and mEV samples 

was detected by flow cytometry. Because sEVs cannot be detected with the FACS Calibur 

due to their size, they were bound to a larger support, 4 μm diameter 4 w/v% aldehyde-

sulfate latex beads. The non-specific antibody binding sites of the beads were blocked 

with 1 w/v% bovine serum albumin (BSA) and 100 mM glycine. After adding 

unconjugated, anti-human OPG and anti-human RANKL primary antibodies, samples 

were incubated with secondary fluorescent antibodies (FITC = fluorescein isothiocyanate 

and PE = phycoerythrin) for 30 min at 4 oC in the dark. The mEV samples were also 

labeled with AV-FITC dye, which detects externalized phosphatydilserine, while sEV 

samples were also labeled with CD9-FITC antibodies. Antibodies were administered 

according to the manufacturer's recommendations. For cytometric measurement, samples 

were taken in 300 µL of buffer. Vesicle-free buffer dye controls, unstained samples, and 

in the case of sEV samples, empty latex bead samples were also used as controls during 

the measurements and to determine the fluorescent gate. In the case of mEV samples, 

differential detergent lysis was performed. No detergent was used in the sEV 

measurements, as the detergent sensitivity of sEV samples is significantly lower than that 

of the mEV samples [121]. 

There was no significant difference in vesicular OPG and RANKL content of the 

three donor groups. The mEV samples carried small amounts of the two molecules 

(Figure 24). 

https://paperpile.com/c/F6Midp/07pYl
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Figure 24 OPG and RANKL expression of human blood-derived sEV and mEV 

samples. The number of events for each measurement is calculated for 100.000 events, 

with samples labeled with only one type of fluorescent antibody at a time. Columns 

represent the mean fluorescence intensity (MFI) ± SEM. Source: Marton N et al. [120] 

 

EVs carry donor cell-derived markers e.g. CD (cluster of differentiation) 

molecules. Transmembrane receptors are characteristic of significant amounts of cell 

types in the blood: monocytes (CD14) and neutrophil granulocytes (CD15) were detected 

by flow cytometry on sEV and mEV samples by using anti-CD14-PE and anti-CD15-

FITC  antibodies. 

Significant differences in CD antigen expression were recorded in the three groups 

(healthy: n=6, RA: n=7, PsA: n=5). The sEV samples isolated from the blood of PsA 

donors expressed the most CD14. The CD15 receptor characteristic of neutrophil 

granulocytes was most abundant in PsA mEV samples (Figure 25). 

https://paperpile.com/c/F6Midp/2yk7D
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Figure 25 Detection of donor cell-derived CD14 and CD15 markers on sEV and mEV 

samples. The number of events for each measurement is calculated at 30.000 events. 

Columns represent the mean ± SEM, * p<0,05. Source: Marton N et al. [120] 

 

 

 

 

 

  

https://paperpile.com/c/F6Midp/2yk7D
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4. DISCUSSION 

 

 

 

Investigation of osteoclasts of healthy donors and patients suffering from RA or 

PsA is relevant since activation of osteoclasts is increased in these inflammatory 

arthropathies, resulting in local and systemic bone loss. There are some similarities in the 

pathomechanism of these diseases and RA and PsA patients might show similar 

symptoms. There are also differences in the immunopathogenesis of these diseases, in 

which different cells and different cytokines play a key role in RA than in PsA. Exploring 

these differences in protein levels, and investigating the EV profile in these diseases might 

help us to better understand the development of RA and PsA or to develop newer clinical 

examinations. 

There are some published proteomic studies, which examined human blood-

derives monocytes [55–57]. There are also mice originating data available - proteomics 

of osteoclasts differentiated from BMM cultures were studied [54]. A 

monocyte/macrophage osteoclastogenesis model, the RAW264.7 human cell line 

differentiates were also examined by proteomic methods [49]. The results of these papers, 

e.g. the upregulation of mitochondrial proteins during differentiation are in accordance 

with our data regarding osteoclast differentiation (Figure 7). 

We found, that proteins upregulated in osteoclast samples have an important role 

mostly in osteoclast differentiation (e.g. transferrin receptor protein 1) or osteoclast 

function (e.g. integrin alpha-V) (Figure 12 and Figure 14). While proteins 

downregulated in osteoclast samples are connected mostly to immunological processes 

(e.g. cathepsin G) (Figure 13 and Figure 14). 

We got different results not just in the case of comparing monocyte, preosteoclast, 

and osteoclast samples, but when comparing osteoclast samples of healthy donors and 

patients suffering from RA or PsA as well. RA and PsA-derived osteoclasts expressed 

significantly more proteins involved in immunological processes and proteins of the 

MHC complex (Figure 16, Figure 17, Figure 18, and Figure 19), which is in accordance 

with the fact that RA and PsA are inflammatory arthropathies. PsA-derived osteoclasts 

also expressed significantly more proteins involved in lipid metabolic processes (Figure 

19). Sorokin et al. described a connection between psoriatic inflammation and lipid 

https://paperpile.com/c/F6Midp/huHp3+Ho7uG+NoK8L
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oxidation [122]. Both RA and PsA-derived osteoclasts expressed significantly fewer 

proteins involved in metabolic processes than healthy-derived osteoclasts (Figure 17 and 

Figure 19). These results (reduced metabolic processes and elevated immunological 

features) altogether suggest that differentiation is inhibited to some extent in osteoclasts 

derived from RA or PsA monocytes and immunological functions are more retained in 

these cells compared to healthy derived osteoclasts. 

Interestingly, a comparison of monocytes or preosteoclasts of healthy donors with 

examined patients showed separation to a lesser extent when using PCA analysis than the 

comparison of osteoclasts (Figure 14). This suggests that the environment from which 

the cells are differentiated is important, even when differentiating the cells under the same 

circumstances. 

Besides proteomic differences, we also found that the pattern of circulating EVs 

was different in healthy individuals and patients suffering from RA or PsA. PsA blood-

derived sEVs mostly originated from monocytes, while PsA blood-derived mEVs were 

from neutrophil granulocytes (Figure 25). In addition to the potential physiological 

functions, circulating EVs may also have possible pathogenetic effects [80,83], thus these 

findings might contribute to the development of newer diagnostic or prognostic clinical 

examinations. 

Different EV populations are resistant to detergents to varying degrees. The lEVs 

and mEVs are much more sensitive to Triton-X 100 than sEVs. Utilizing this 

phenomenon, the presence of circulating mEVs was confirmed by the differential 

detergent lysis method previously described by Bence György et al [121,123] (Figure 

23). 

EVs can function as biologically active signalosomes, thus influencing the 

development and function of cells that interact with them. Osteoclasts can interact with 

EVs by endocytosis, fusion, or receptor-ligand interaction of cell surface molecules 

[124,125]. The effects of certain tumor cell-derived EVs on osteoclastogenesis have been 

studied [126], but the possible functions of circulating EVs in influencing 

osteoclastogenesis were not described earlier. Given this fact, and since, after the liver, 

bone tissue takes up the most EVs from the circulation [127], we aimed to study the effect 

of vesicles on osteoclasts. In healthy individuals, an extremely pronounced inhibitory 

effect on osteoclast cell formation was observed after SEC purified blood-derived sEV 
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treatment (Figure 22). This suggests that EVs present in the blood may regulate the 

activation of osteoclasts, including bone breakdown. This process may have a 

physiological role in bone regeneration after bone fractures when vascular injuries can 

allow more vesicles to flow close to bone cells than usual. 

Blood-derived sEVs had a similar effect on in vitro osteoclastogenesis when 

treating monocytes isolated from RA patients with sEVs separated from the same 

patient’s blood. In the case of PsA patients’ samples, there was no inhibitory effect, which 

refers to a different pathogenesis of the two inflammatory rheumatological diseases [120]. 

In summary, investigating the human blood-derived osteoclasts of healthy and RA 

and PsA donors at the protein level revealed some significant functional differences in 

healthy, RA, and PsA samples. Analysis of the blood-derived EVs of healthy and RA and 

PsA patients showed differences in the pattern of EVs in healthy and unhealthy samples. 

SEC purified sEV treatment significantly inhibited osteoclast formation of healthy 

samples.  

Investigatigation of the proteomics of osteoclast samples derived from healthy 

donors and patients suffering from RA or PsA may contribute to the development of novel 

therapies in the future based on the expression pattern differences. 

  

https://paperpile.com/c/F6Midp/2yk7D
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5. CONCLUSIONS 

 

 

 

The major conclusions of our studies are as follows: 

 

 

5.1. 

● We described for the first time the dynamic proteomic changes during 

osteoclastogenesis of healthy, RA and PsA blood-derived monocytes. 

 

● Differences between the cells originating from healthy donors and RA and 

PsA patients - and differentiated under the same circumstances - are more 

prominent during the later stages of development. 

 

● Differences in protein expression profiles of RA and PsA osteoclasts 

compared to healthy samples suggests that a diverse cytokine environment 

modifies osteoclast differentiation. 

 

 

5.2. 

● The sEVs in plasma, mostly released by blood cells, can interact directly 

with osteoclasts, leading to a pronounced inhibitory effect on osteoclast 

formation in healthy individuals. This process may have a physiological 

role in bone regeneration. 

 

● Circulating vesicle patterns differ in healthy individuals with rheumatoid 

arthritis and psoriatic arthritis patients, which may contribute to the 

development of new diagnostic and prognostic tests. 
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6. SUMMARY 

 

 

 

The knowledge of the pathomechanisms of rheumatoid arthritis and psoriatic 

arthritis inflammatory arthropathies is expanded. 

In the framework of our research, we investigated the dynamic proteomic changes 

during osteoclastogenesis of healthy donors and RA or PsA patients. We found significant 

protein expression changes in osteoclasts derived from healthy, RA, or PsA monocytes, 

which reveal functional e.g. immune differences in these diseases. The separation of the 

samples based on diagnosis was bigger in further development stages, which suggests that 

the diverse cytokine environment from which monocytes were isolated has great 

significance on osteoclastogenesis, even under the same circumstances. Our results are 

unique in that this is the first study that describes the proteomics of human blood-derived 

osteoclasts and their differentiates. The differences in the expression patterns of healthy 

donors and RA and PsA patients’ samples may contribute to the development of newer 

therapies in the future. 

Based on our results, SEC purified sEVs derived from human plasma inhibit 

osteoclast formation in vitro in healthy individuals, which may have a physiological role 

in bone regeneration. We also found that there is a difference in the patterns of EVs in 

healthy donors and patients suffering from RA or PsA [120]. 

These data altogether suggest that the profile of extracellular vesicles and the 

phenotype of monocytes present in the circulation of RA and PsA patients are different. 

Further studies including the analysis of osteoclasts derived from patients with 

pre-RA or difficult-to-treat RA [128] would deeper our knowledge of osteoclastogenesis 

in healthy and unhealthy circumstances as well. 
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