NMR mérési módszerek továbbfejlesztése és alkalmazásuk a gyógyszerkutatásban kismolekulák oldatfázisú szerkezetvizsgálatára

Doktori (PhD) értekezés - tézisvázlat

Boros Sándor

Semmelweis Egyetem Gyógyszertudományok Doktori Iskola

Konzulensek:	Dr. Kövér Katalin, D.Sc., az MTA rendes tagja, egyetemi tanár
	Dr. Batta Gyula, D.Sc., egyetemi tanár
	Dr. Kéri György † , D.Sc., egyetemi tanár
Hivatalos bírálók:	Dr. Rohonczy János, Ph.D., habil. egyetemi docens
	Dr. Kraszni Márta, Ph.D., egyetemi docens
Komplex vizsga bizottság elnöke: Dr. Zelkó Romána, D.Sc., egyetemi tanár	
Komplex vizsga bizottság tagjai:	Dr. Szökő Éva, D.Sc., egyetemi tanár
	Dr Antal István, Ph.D., habil. egyetemi docens
	Dr. Nikolics Mária, Ph.D., egyetemi adjunktus
Budapest	

2020

Édesapám emlékére!

Boros István 1939 - 2020

1. Bevezetés

Az NMR spektroszkópia a kezdetektől mostanáig folyamatos látványos fejlődésen ment keresztül. A szerves molekulák NMR szerkezetvizsgálata kezdetben még csak ¹H illetve ¹³C spektrumok felvételéből, spektrumleírásából valamint a finomszerkezettel rendelkező jelek mintázatából és a felhasadásokból leolvasható/kiszámítható *J*(H-H) skaláris csatolási állandók spekulatív elemzéséből állt.

Az 1990-es évek elején bekövetkezett technológiai robbanás óta az NMR spektroszkópia alkalmazása egyre inkább a különböző korrelációs technikák felé tolódott el. Kétdimenziós (2D) illetve szelektív egydimenziós korrelációs mérések alapján egzaktul felépített homo- és heteronukleáris csatolási hálózatból vonhatunk le következtetéseket a vizsgált molekula kémiai kötéseinek rendszeréről. Feltérképezhetjük a keresztrelaxációs viszonyokat, melyek informálnak bennünket a kémiai kötésektől független geometriai viszonyokról, valamint megfigyelhetjük kémiai kicserélődési folyamatokat, ami alapján következtethetünk a molekula viselkedésére az idő függvényében. Az elérhetővé vált nagy térerejű és nagy érzékenységű műszerek, valamint multidimenziós technikák jelentősen kitolták az NMR méréstechnikával vizsgálható molekulaméretet a biopolimerek felé. Mindamellett továbbra sem szabad megfeledkezni a szájon át bevehető gyógyszerek szokásos molekulaméretéről és az ezen molekulák NMR szerkezetmeghatározása során használható módszerek fejlesztéséről, finomításáról sem.

2. Célkitűzések

Az NMR mérés során vizsgálni kívánt jelenség sok esetben nem figyelhető meg tisztán, hanem zavaró, nem kívánatos effektusok ülnek rá, torzítják, elfedik azt. Egyes esetekben pedig a vizsgálni kívánt jelenséget szándékosan más - könnyen mérhető - jelenségre ültetjük rá. A módszerfejlesztések célja sokszor olyan változatok kifejlesztése, melyek a vizsgálni kívánt jelenséget hűen, tisztán, és zavaró effektusok nélkül mutatják, hogy abból kvantitatív következtetéseket lehessen levonni. Ezért a mérési módszereinkbe szűrő, tisztító elemeket építünk be, hogy a nem kívánt zavaró effektusokat elnyomjuk vagy kiszűrjük. Mindamellett a tisztító elemek beépítése ne okozza a kiküszöbölt helyett újabb zavaró hatások megjelenését, a jel/zaj viszony csökkenését, illetve a szükséges mérési idő extrém meghosszabbodását, ne legyen

érzékeny a paraméterek kismértékű megváltozására vagy az optimális kísérleti paraméterektől való kisebb eltérésekre.

Dolgozatomban öt eredeti közlemény anyagát dolgozom fel. Ebből kettő elsőszerzős cikk NMR módszerfejlesztés témakörben; a heteronukleáris távolható csatolási állandó mérésére alkalmas HSQMBC módszer továbbfejlesztése valamint a dipoláris keresztrelaxációs folyamatokon keresztül térközelségek és kémiai cserefolyamatok mérésére alkalmas ROESY módszer egy továbbfejlesztése, a zqs-easy-random-ROESY változat. Mindkét módszerfejlesztés esetében, modellvegyületeken elvégzett mérések, illetve korábbi mérési módszerváltozatokkal összevetés igazolja a javasolt módszer alkalmasságát. A módszerfejlesztések gyakorlati alkalmazását is bemutatom gyógyszerkutatási minták vizsgálatán keresztül, mely mérések egyegy többszerzős, szerkezet-hatás összefüggést bemutató közleményben jelentek meg. Ez utóbbiakból csak a saját mérések bemutatására szorítkozom, ugyanakkor igyekszem bemutatni, hogy a javasolt NMR spektroszkópiai módszernek mindkét munkában jelentős szerepe volt kémiai reakcióutak tisztázásában. Megemlítem spektroszpópiai vizsgálatok során a molekulák időbeli viselkedésére, mikroegyensúlyaira talált felismeréseimet is.

A két módszerfejlesztés egymástól való függetlensége indokolja a dolgozat szerkezetét, miszerint az irodalmi előzményeket, kísérleti részt, a kiértékelést és a gyakorlati alkalmazást a két bemutatandó módszer szerint szétválasztom, majd egy közös összefoglalásban emelem ki tézispontokba szedve az eredményeket.

3. Műszerek, modellvegyületek

A sztrichnin spektrumait a Chinoin Zrt-ben 9.4 Tesla mágneses térerejű 5 mm-es BBFO mérőfejjel és *z* irányú gradienssel felszerelt Bruker Avance II 400 spektrométeren vettem fel. A műszer vezérlése és az adatfeldolgozás TopSpin 2.1 programcsomaggal történt. 5 mg sztrichnin bázist oldottam 0.6 ml deutero-kloroformban, a mérés során a mérőfejet 27 °C-ra termosztáltam. A kodein és a TT-232 spektrumait a Vichem Kft-ben 7.04 Tesla mágneses térerejű 5 mm-es SEI mérőfejjel és *z* irányú gradienssel felszerelt Bruker Avance 300 spektrométeren vettem fel. A műszer vezérlése és az adatfeldolgozás TopSpin 1.3 programcsomaggal történt. 7 mg kodein bázist, illetve 10 mg TT-232-triacetátot oldottam 0.6 ml deutero-dimetilszulfoxidban, a mérések során a mérőfejet 30 °C-ra termosztáltam.

TT-232

1. ábra. A modellvegyületként használt molekulák szerkezeti képlete

A sztrichnint az általam továbbfejlesztett HSQMBC és ROESY változat teszteléséhez egyaránt használtam. A kodeint és a TT-232-t a ROESY módszer továbbfejlesztett változatának tesztelésére használtam.

4. Eredmények - tézispontok

1.

A heteronukleáris távolható csatolási állandók precíz mérésére alkalmas HSQMBC módszer fejlesztésébe kapcsolódtam be. A munkám eredménye a kis kimenőteljesítményű kompozit CPMG G-BIRD adiabatikus HSQMBC módszerváltozat.

A HSQMBC módszer javasolt változata a több, egymástól független NMR-es műhelyben is fejlesztett HSQMBC módszer előnyös módosításait ötvözi. Egyik forrásból átvettem az adiabatikus pulzusokat, másik forrásból a G-BIRD CPMG szűrő blokkot, harmadik forrás javaslata volt a nagy kimenőteljesítményű kompozit CPMG elem, mely kevésbé érzékeny a kis kalibrálási pontatlanságokra, mint a korábbi megoldások, de ugyanakkor mérhetően fűti a mintát és a műszerelektronikát. A Kövér Katalinnal (Debreceni Egyetem) közösen továbbfejlesztett változatban saját javaslatom a kompozit CPMG elem (szürke hátterű blokkok) kis kimenőteljesítménye az elektronika nagyobb biztonsága miatt, és a gradiens blanking kapcsoló áthelyezése az utolsó gradiens pulzus és az adatgyűjtés megkezdése közötti pontról az adatgyűjtés utánra, a szebb jelalak érdekében. A beépített szűrőelemek javasolt kombinációja nem csökkenti a módszer érzékenységét, nem növeli a szükséges mérési időt, viszont robusztus, azaz kalibrációs hibára kevésbé érzékeny módszerváltozatot eredményez.

2. ábra. A javasolt kis kimenőteljesítményű kompozit CPMG G-BIRD adiabatikus HSQMBC változat folyamatábrája. A vékony illetve vastag vonalak reprezentálják a 90 illetve 180°-os nagy kimenőteljesítményű pulzusokat, szürke háttár előtt kisebb magasságú vékony és vastag vonalak a kis kimenőteljesítményű szűrőpulzusokat, valamint kék fél-ellipszisek az adiabatikus pulzusokat. $d24 = 120-180 \mu$ sec. Gradiens pulzusok: G1 : G2 : G3 : G4 = 80 : 20.1 : 17 : 11 %.

A módszerváltozat hatékonyságát a sztrichnin modellvegyületen végzett összehasonlító mérésekkel mutattam be. **[I**]

3. ábra. A keresett csatolási állandó kinyerésének lehetséges módszerei a HSQMBC spektrumból. a.) Szélső spektrumvonalak távolságából. b.) Egymásnak megfelelő ellentett fázisú spektrumvonalak távolságából. c.) Spektrumszimulációval.

2.

Elkészítettem és teszteltem a kis kimenőteljesítményű kompozit CPMG adiabatikus HSQMBC módszer szelektív 1D változatát is. **[I**]

4. ábra. A javasolt szelektív 1D kis kimenőteljesítményű kompozit CPMG HSQMBC változat folyamatábrája. Zöld fél-ellipszis jelképezi a kiválasztásért felelős szelektív 180°-os pulzust. $d24 = 120-180 \ \mu sec$, A gradiens pulzusok javasolt értékei: G1 : G2 : G3 : G4 = -40 : 40 : 10 : - 20 %

3.

Vichem-ben végzett munkám során a HSQMBC módszer javasolt változatát sikeresen alkalmaztam különbözőképpen szubsztituált kinoxalin és pirido-pirazin izomerek megkülönböztetésére. [II, III]

5. ábra. Kinoxalin és és pirido-pirazin származékok szintézise

6. ábra. A JJ1677X15 minta HSQMBC spektrumának részlete, felbontás 0.3 Hz/pont.

7. ábra. A **JJ1677X15** minta spektrumainak értékelése, ¹H- és ¹³C-NMR jelhozzárendelés, valamint a heteronukleáris távolható csatolások és csatolási állandók értelmezése. A heteronulkeáris távolható csatolási állandó értékeit csak a molekula kritikus részén tűntettem fel.

Kezdetben korábbi munkahelyemen a Chinoin Zrt-ben, majd a Vichem Kft-ben, Batta Gyulával (Debreceni Egyetem) közösen fejlesztettük a zqs-easy-ROESY módszerváltozatot molekulán belüli ¹H-¹H térközelségek és kémiai cserefolyamatok mérésére. A ROESY módszer egyik off-rezonancia változatába (easy-ROESY) építettem be a TOCSY és NOESY módszerváltozatokhoz leírt, adiabatikus invertálást és szimultán enyhe gradiens pulzust alkalmazó zéró-kvantum szűrő elemet. A javasolt zqs-easy-ROESY módszer szélesebb, a kismolekulákat is felölelő, molekulaméret-tartományban használható eredményesen, mint a korábbi ROESY módszerváltozatok.

A keskeny vonalak jelentik a 90°-os hard pulzusokat. A két kitöltetlen ív jelzi a zéró-kvantum szűrő formázott adiabatikus invertáló pulzusait, javasolt hosszuk rendre 50 és 30 ms. A spinlock pulzusokat fel- illetve levezető félgauss rámpapulzusok hossza 1 ms. A spin-lock szakaszok javasolt hossza kétszer 100-150 ms, a vizsgált molekula méretétől függően, ami ±5%-kal randomizálható. ▲ jel jelzi az adó frekvenciájának átkapcsolásának helyét onrezonancia és az alá- illetve föléhangolt off-rezonancia állapotok között.

A módszer hatékonyságát kodein, sztrichnin és TT232 molekulákon végzett összehasonlító mérésekkel illusztráltam, a kodein és a sztrichnin esetén statisztikai összehasonlítással validáltam. **[IV, VIII]** A 9. ábra a sztrichninnek saját zqs-easy-ROESY változattal felvett átnézeti spektrumát mutatja, a 10. ábra pedig különböző módszerváltozatokkal felvett spektrumokból mutat válogatott keresztcsúcsokat. A bal tábla olyan keresztcsúcsokat tartalmaz, melyek egyben csatoló partnerek is. Jól látszik a különböző mértékű és jellegű fázisalternálás a két korábbi változattal felvett spektrum részletein és a tiszta pozitív fázis a saját változattal felvett spektrum részletein.

A jobb tábla spektrumrészletei nem csatolópartnerek közötti térközelségeket mutatnak, ezért nincs COSY keresztcsúcs az első oszlopban. Az első sorban lévő ROESY keresztcsúcs

mindhárom módszerváltozattal egyaránt megfelelő. A második és harmadik valamint a negyedik és ötödik sor páronként ugyannak a térközelségnek az átlóra szimmetrikus két jelét mutatja. A saját változattal mért spektrumban keresztcsúcs az átló (második és harmadik sor) illetve alternáló fázisú más keresztcsúcs (negyedik és ötödik sor) közelében is megbízhatóan integrálható maradt. Ebben a sorozatban jelazonosítási és integrálási nehézség leginkább az easy-ROESY módszerváltozat (harmadik oszlop) esetén tapasztalható.

9. ábra. A sztrichnin offszet-kompenzált, zéró-kvantum elnyomásos (zqs-easy-) ROESY spektruma [**IV**]

10. ábra. Válogatott keresztcsúcsok a sztrichnin ROESY spektrumaiból

Mindkét táblában az első oszlop a COSY spektrum, második oszlop a Bruker pulzusprogramkönyvtárban megtalálható ROESY változattal, harmadik oszlop az easy-ROESY-vel és negyedik oszlop a saját ROESY módszerváltozattal [**IV**] felvett spektrum részlete.

11. ábra. A spfge-se offszet-kompenzált zéró-kvantum elnyomásos adiabatikus szelektív 1D ROESY (spfge-se-1D-zqs-easy-ROESY) folyamatábrája.

A zqs-easy-ROESY módszerváltozatot eredményesen alkalmaztam imidazo-piridin és imidazopirazin alapvázat tartalmazó, biológiai vizsgálatra szánt végtermékek valamint hozzájuk vezető köztitermékek szerkezetvizsgálatában. [V] A szintézisút szoros NMR spektroszkópiai követést igényelt, mivel egyes reakciólépésekben több reaktív centrum is volt a reaktánsban; a c. reakciólépében halogén cseréje aminra, miközben két halogén van a kiinduló molekulában, illetve az e. és g. reakciólépésben acilezés illetve karbamid kialakítása, miközben két amin csoport van a molekulában.

12. ábra. Imidazo[1,2-a]pirazin vázat tartalmazó származékok előállítása.

6.

Tautomer egyensúlyt figyeltem meg imidazo-pirazin alapvázat tartalmazó biológiai vizsgálatra szánt végtermékek esetén.

Azt tapasztaltam, hogy az imidazo-pirazin alapvázat tartalmazó végtermék molekulák egy jól körülhatárolható régiójának ¹H-NMR jelei szélesek, míg az analóg imidazo-piridin származékok szabályosan viselkednek. A jelenség oka az, hogy a gyűrűrendszerben a benzoil-amidnak léteznek olyan nem szokványos tautomerjei, melyeket hidrogén híd stabilizál. Ehhez a stabilitáshoz szükség van az imidazo-pirazin gyűrű nitrogén atomjára.

A szintetikus kísérleti tapasztalat azt mutatja, hogy amíg a benzoilezett imidazo-piridin tovább építhető Suzuki reakcióval, a benzoilezett imidazo-pirazinról a benzoil lehasad a Suzuki reakció körülményei között, így az elvileg egymással analóg szerkezetek kiépítésére eltérő szintézisutat

kellett választani. A benzoil csoport leválása összefüggésben van a hidrogénhidat tartalmazó tautomerek számottevő jelenlétével, molekulák ¹H-NMR spektrumában fellépő jelkiszélesedést és az amid kötés instabilitását ez az anomális hidrogén híd okozza. **[V]**

13. ábra. VIC31874 vegyület, RG1505 minta zqs-easy-random ROESY spektruma.

imidsav

14. ábra. Az amid, imin és imidsav tautomer mikroegyensúlyi rendszer. Imidsav esetén elvi lehetőség van kötés körüli 180°-os elfordulásra is, ez esetben a biciklus imidazol gyűrűjének nitrogén atomja vehet részt a hidrogén hídban. Viszont, amikor a benzoil csoport elektronegatív *orto* szubsztituenst tartalmazott, az stabilizálta az amid tautomert.

15. ábra. VIC31874 vegyület, **RG1505** minta (**17e** sorszámon az **V**. számú saját publikációban) spektrumainak értelmezése, jelhozzárendelésük. Az ¹H-NMR hozzárendelést szemléltető szerkezeti képleten szürke színnel tüntettem fel a kiszélesedett jelek kémiai eltolódásait.

Pirido-pirimidon magot tartalmazó végtermékek előállítása során az alapváz kialakításakor egy metil csoport nem várt vándorlását figyeltük meg és bizonyítottam NMR spektroszkópiai módszerekkel. Karbonsav-metilésztert alkalmazva reaktánsként, a metil csoportot a keletkezett termékben már nitrogén atomhoz kapcsolódva azonosítottam. **[VI, VII]**

16. ábra. 2-alkilamino-6-ariloxi-8-metil-pirido[2,3-d]pirimidin-7-on származékok kétféle előállítása és 6-ariloxi-2-(alkilamino)-8H-7-metoxi-pirido[2,3-d]pirimidin származékok tervezett szintézise. Szürke színnel azok a reakciólépések, melyek nem az elképzelés szerint játszódtak le.

8.

Pirido-pirimidon alapvázat és hozzá kapcsolódó alkilamino szubsztituenst tartalmazó végtermékek NMR spektrumai két jelsorozatot tartalmaznak 70:30 arányban, az egymásnak megfelelő jelpárok között cserélődési keresztcsúcsok jelennek meg a NOESY spektrumban, illetve ezen jelpárok jelei magasabb hőmérsékleten egybeolvadnak a hőmérsékletfüggő méréssorozatban. A jelenség magyarázata az, hogy a valós szerkezetben és töltéseloszlásban szerepet játszanak olyan ikerionos mezomer határszerkezetek is, melyekben az amin nitrogén és a pirido-pirimidin gyűrű között kettős kötés van. Az eredő olyan szerkezet, ahol a biciklus és az amin nitrogén között részleges kettős kötés van. A gátolt forgáshoz szükség van a pirido-pirimidon gyűrű karbonil csoportjára is, analóg pirimidinek esetén a forgás teljesen szabad, egy jelsorozat van. Ugyancsak egy jelsorozat van tercier aminok esetén is. **[VI, VII]**

Az amidok gátolt forgása gyakori és közismert jelenség, amin gátolt forgása viszont nagyon ritka, csak speciális kémiai környezetben fellépő jelenség.

7.

17. ábra. A 6-ciano-2-(ciklopentilamino)-8-metil-8H-pirido[2,3-d]pirimidin-7-on modellvegyület NOESY (EXSY) (τ_{mix} = 250 ms) spektruma, valamint kinagyított spektrumrészletei

18. ábra. A 2-alkilamino-6-ariloxi-8-metil-pirido[2,3-d]pirimidin-7-on típusú vegyületek rotamer egyensúlya és a rotamerek lehetséges mezomer határszerkezetei.

A dolgozatban felhasznált, társszerzőségemmel megjelent, referált közlemények:

I.

Sándor Boros, Katalin E. Kövér:

Low-power-composite-CPMG HSQMBC experiment for accurate measurement of long-range heteronuclear coupling constants

Magn. Reson. Chem., 49, 106-110 (2011)

DOI: 10.1002/mrc.2717

II.

László Kékesi, András Dancsó, Eszter Illyés, **Sándor Boros**, János Pató, Zoltán Greff, Gábor Németh, Rita Garamvölgyi, Ferenc Baska, László Örfi, György Kéri:

Preparation of Pyrido[2,3-b]pyrazine Ring System via Regioselective Condensation Reaction *Lett. in Org. Chem.*, **11**(9), 651-656 (2014)

DOI: 10.2174/1570178611666140606205028

III.

Kékesi László, Sipos Anna, Németh Gábor, Dancsó András, Illyés Eszter, **Boros Sándor**, Breza Nóra, Nemes Zoltán, Hegymegi-Barakonyi Bálint, Pató János, Greff Zoltán, Kéri György, Őrfi László:

Erlotinib-érzékeny és erlotinib-rezisztens sejtvonalakat gátló pirido[2,3-b]pirazinok, és előállításuk régiószelektív kondenzációs reakcióval

Acta Pharmaceutica Hungarica, 84, 91-104 (2014)

IV.

Sándor Boros, Gyula Batta:

Offset-compensated and zero-quantum suppressed ROESY provides accurate ¹H–¹H distances in small to medium-sized molecules

Magn. Reson. Chem., 54, (12), 947-952 (2016)

DOI: 10.1002/mrc.4474

V.

Rita Garamvölgyi, Judit Dobos, Anna Sipos, **Sándor Boros**, Eszter Illyés, Ferenc Baska, László Kékesi, István Szabadkai, Csaba Szántai-Kis, György Kéri, László Őrfi: Design and synthesis of new imidazo[1,2-*a*]pyridine and imidazo[1,2-*a*]pyrazine derivatives with antiproliferative activity against melanoma cells *Eur. J. Med. Chem.*, **108**, 623-643 (2016) DOI: 10.1016/j.ejmech.2015.12.001

VI.

Laura Simon-Szabó, Márton Kokas, Zoltán Greff, **Sándor Boros**, Péter Bánhegyi, Lilián Zsákai, Csaba Szántai-Kis, Tibor Vántus, József Mandl, Gábor Bánhegyi, István Vályi-Nagy, László Őrfi, Axel Ullrich, Miklós Csala, György Kéri:

Novel compounds reducing IRS-1 serine phosphorylation for treatment of diabetes *Bioorg. Med. Chem. Letters*, **26**, 424-428 (2016) DOI: 10.1016/j.bmcl.2015.11.099

VII.

Kéri György, Őrfi László, Greff Zoltán, Bánhegyi Péter, Szántai-Kis Csaba, Erős Dániel, **Boros Sándor**, Breza Nóra, Zsákai Lilián:

Új kináz inhibitor hatású vegyületek, és felhasználásuk fibrotikus sejtosztódás szabályozására (Novel use of kinase antagonist compounds to alter fibrotic cell proliferation) **P1500620** ügyszámú magyar szabadalmi bejelentés, (2015. dec. 16.)

VIII.

Sándor Boros, Zoltán Gáspári, Gyula Batta:
Accurate NMR Determinations of Proton–Proton Distances
In Annual Reports on NMR Spectroscopy (ed. by G. A. Webb), 94, 1-39 (2018)

DOI: 10.1016/bs.arnmr.2017.12.002