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INTRODUCTION 

Several structural and functional neural network abnormalities 

have been described in schizophrenia, indicating the nature of 

the disease, which entails a comprehensive, multi-segmental 

deficit in the brain involving neural network connections. The 

disorder is epidemiologically significant, its world-wide 

prevalence is approximately 1%. The diagnosis of the disorderis 

based on ICD-10 (International Classification of Disease) and 

DSM 5 (Diagnosis and Statistical Manual of Mental Disorders) 

criteria. 

The etiology of schizophrenia involves several factors, 

including potential genetic, psychosocial and 

neurodevelopmental causes. In terms of neurobiological 

backgrounds, various neurochemical, structural and genetic 

alterations may play role in the emergence of the disorder, but 

current pathophysiological theories and neurobiological 

abnormalities are only partially able to explain the symptom. 

Thus, a widely accepted theory explaining the disease 

comprehensively, both its course and its diverse symptoms, has 

not yet emerged. 

Gamma band oscillation (GBO) can be investigated by non-

invasive EEG recordings in various task situations or in resting-

state. Former studies confirmed that sensory-evoked gamma-
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response is reduced in patients with schizophrenia as compared 

to healthy controls. Furthermore, in cognitive tasks, reduction 

of gamma-response was found in patients with schizophrenia 

compared to controls in selective attention and working 

memory tasks. These task-related gamma disturbances were 

mostly reported in the lower gamma frequency range - 30-

50Hz, especially around 40Hz. While much work has been 

devoted to investigations with sensory-evoked and cognitive 

paradigms, resting-state gamma activity has been rarely studied. 

Recent resting-state studies, using fMRI, showed evidence that 

task free/resting-state networks correlate with task-positive 

networks. 

In the last 10 years several new analytical methods have been 

applied to high electrode density EEG recordings. Lehman et al. 

described first that the spatial configuration of brain electric 

fields on the scalp remains quasi-stable for a short periods of 

time and represents “functional microstates” associated with the 

activity of different intracranial generators that form large scale 

neuronal networks. These microstates have been considered as 

building blocks of mentation manifested in EEG. There are four 

common topographical patterns of microstates, labeled as A, B, 

C and D. Simultaneous EEG-fMRI has revealed correlations of 

these microstates with various neural networks, including the 

auditory (microstate A), visual (microstate B), salience 
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(microstate C) and fronto-parietal networks (microstate D). An 

emerging body of evidence suggests that these microstates are 

temporally distinct electrophysiological components of the 

default mode network (DMN). Microstates can be characterized 

by their average duration, occurrence per second and total 

coverage of time. Furthermore, transition probabilities from one 

state to another can be quantified. Since data suggest that EEG 

microstates are associated with large scale brain networks, 

properties of the microstates can be used to measure large scale 

brain network operation. 

The two studies that are included in the current dissertation 

looked at resting brain activity from different vantage points. 

The gamma power spectrum that the first study focused on 

describes the total power of the gamma oscillations in the 

examined time window. Since an amplitude increase in the 

gamma band occurs during the synchronization of cortical 

networks, and the amplitude increase can be characterized by 

the frequency power spectrum, gamma power can serve as a 

measure of the synchronous activity of cortical networks. 

Deviations in gamma activity can indicate alterations in the 

synchronous activity of networks, and may affect multiple 

functions. EEG micro-states have been associated with a 

number of brain networks. It is likely that the micro-states 

(scalp potential distributions) are the result of simultaneous 
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synchronous activity involving multiple networks or network 

units. Characteristics describing micro-states are metrics of 

these network structures, and their change suggests impaired 

system functioning. In summary, both analyzes are used to gain 

insights into changes in the activity of brain networks.
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OBJECTIVES 

The objective of the first study was to investigate differences in 

spontaneous gamma activity in patients with schizophrenia and 

healthy controls (HC). We used high-density EEG to delineate 

those brain areas in detail where alterations in gamma activity 

are manifested, and may reflect the operation of networks 

activated at rest. Focusing on the gamma frequency range of 30-

48Hz that was pinpointed by previous studies, we performed a 

comprehensive, sensor-based analysis of gamma-power 

differences including the full sensor-space of 256 channels to 

identify brain areas that may be associated with those networks 

that contribute to the pathophysiology of schizophrenia. 

Furthermore, we investigated the association of gamma activity 

with psychopathological and clinical measures. 

The objective of the second study was to build a model that 

fulfills the requirements of a robust machine learning study. In 

particular, we used the Support Vector Machine (SVM) to 

classify patients according to the clinical diagnosis based on 

electrophysiological data. We used microstate segmentation to 

extract features from EEG and conducted further analyses to 

select a subset of these features to feed SVM. We used a 10-

fold cross-validation procedure to test the generalizability of the 

model.  
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METHODS 

We enrolled 106 patients with schizophrenia and 80 healthy 

controls in the study. Due to technical reasons, such as noisy 

EEG registration, failed session completion, or ambiguity in the 

diagnoses we used the EEG data of 70 patients with 

schizophrenia and 76 healthy controls for the analysis of the two 

studies. 

In the first study sixty patients with schizophrenia (mean 

age=35.2 years (SD=9.6), male percentage=51.6%) and 76 

healthy controls (mean age=32.3 years (SD=10.6), male 

percentage=35.5%) participated. In the second study 70 patients 

with schizophrenia (mean age=35.6 years (SD=10.2), male 

percentage=52.8%) and 75 healthy controls (mean age=32.4 

years (SD=10.4), male percentage=35.3%) participated. 

The average chlorpromazine equivalent dose was 617.2 mg/day 

(SD = 333.9 mg). Thirty-three patients were on benzodiazepine 

medication.  

Two minutes of resting-state EEG recordings (Biosemi Active 

Two system) were obtained while participants sat in a dimly lit 

room, and were asked to remain still with eyes closed. EEGs 

were recorded by the 256-channel Biosemi Active Two system 

(Biosemi Inc., Amsterdam, Netherlands) at a sampling rate of 

512Hz, referenced to the vertex. 
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The recorded data were further processed offline with the 

Mathworks Matlab „EEGLAB toolbox” and self-made scripts. 

The statistical analysis was conducted in SAS 9.4 and Matlab. 

EEG was re-referenced to the common average potential. A 48-

52Hz Parks-McClellan stop-band Notch-filter in ERPLAB 

(Lopez-Calderon and Luck, 2014) was used to remove electric-

interference from the 50Hz-line; then the signal was band-pass 

filtered (1-70Hz for the 1st study and 1-40Hz for the 2nd study) 

using zero-phase shift-forward and reverse-IIR Butterworth-

filter. 

EEG data were manually inspected and non-brain related 

artifacts such as muscle contractions and movement-related 

artifacts were removed. This data cleaning procedure resulted 

in an average 91.7 (SD=18.9) and 87.9 (SD=20.77) seconds of 

data for controls and patients with schizophrenia, respectively. 

Additionally, an Independent Component Analysis (ICA)-

based method was used with the ADJUST toolbox to eliminate 

the remaining muscle and eye-movement related artifacts 

Analysis of gamma activity was performed on 60 seconds of 

artefact-free EEG data, based on its reliability in resting state 

EEG power spectra. For microstate segmentation, we used 40 

seconds of artifact-free EEG data since earlier studies showed 

that this meets the quality requirements for the microstate 

analysis. In addition, we reduced the sampling rate to 128 Hz. 
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Based on the corrected EEG data, FFT was performed to extract 

absolute power applying the Welch’s method, using 2 seconds, 

75% overlap window and 0.5Hz frequency bin resolution. 

Gamma band power was calculated in 31-48Hz, by the 

summation of absolute power on frequency bins within the 

specified frequency range. Base-10 log transform was 

computed for the summed frequency band, which yielded a 

better approximation of normal distribution compared to the 

raw data. 

For microstate segmentation, we adopted the standard 

procedure from an earlier work, where the modified K-mean 

clustering algorithm was used. The first step was a data 

reduction, where we selected those timepoints where the highest 

signal-to-noise ratio (SNR) can be achieved. Global Field 

Power (GFP) is good measure of SNR, derived as standard 

deviation of all channels at each timepoint. Since GFP shows 

oscillatory and scalp topographies that remain stable around 

GFP peaks, these timepoints were used further by the algorithm. 

Modified K-mean clustering represents an iterative algorithm, 

and for the first iteration, we randomly selected n time points 

for the initial template maps. In each iteration, we derived the 

spatial correlation of template maps with the spatial topography 

at each time point and marked the time point with the label of 

the most highly correlated template map. At the end of the 
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iteration, we derived new template maps based on the time 

points labeled with the same template maps. In the subsequent 

iteration, we used the new template maps. This iterative 

algorithm reaches a point where there is no change in the labels 

of the time points, thus no new maps can be derived.  

The final maps can be quantified with global explained variance 

(GEV), which is a measure of how well the final derived spatial 

topographies can explain the variance of the raw topographical 

data. GEV values range from 0.58 to 0.84 in prior EEG 

microstate studies (Michel and Koenig, 2018). Since the initial 

template maps were selected randomly in the first iteration, we 

repeated this procedure for hundreds to thousands of times. The 

iteration where the highest GEV was achieved will serve for 

microstate classes for that individual subject. Based on previous 

literature, n = 4 microstate classes were used 

In the third step, we derived the group average microstate maps 

from individual subjects using K-mean clustering. The four 

microstate maps of each individual in a group were 

concatenated, which resulted in a series of topography maps of 

individuals. To obtain the group-averaged microstate maps, we 

conducted K-mean clustering with the same iterative procedure 

(as in the second step) on this concatenated dataset. This 

resulted in the group-averaged microstate maps. These maps 

served for “back fitting”, where each time (sampling) point of 
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the pre-processed EEG was spatially correlated with each map 

and the given time point was labeled based on the most 

correlated map. The result is a sequence of microstate labels.  

The sequence of microstates contains information on the 

occurrence of the series of microstate classes and serves as a 

basis to obtain various measures/features of microstate 

characteristics. The measures/features that are used in most of 

the EEG microstate studies include average duration, 

occurrence per second and total coverage of time for each 

microstate class. Since EEG microstates do not overlap with 

each other; the transition probability from one state to another 

can also be quantified and used as additional measures of EEG 

microstates. We used the Microstate toolbox, an extension to 

Matlab EEGlab toolbox, for the computations. 
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RESULTS 

I. study 

There were no significant between group differences in terms 

of age (F=2.66; p=0.1), gender (Chi2=2.27; p=0.13) and 

education level (Chi2=0.81; p=0.36). Nonetheless, we used 

these characteristics as covariates to adjust for their potential 

confounding. 

Our findings indicated elevated gamma activity in patients with 

schizophrenia at rest. In terms of nominal significance, 118 out 

of 256 channels showed elevated gamma power in patients with 

schizophrenia as compared to healthy controls. A total of 78 

channels of these remained significant after correction for 

multiple comparisons. The group differences emerged in two 

topographical areas, enclosing a fronto-central and posterior 

cluster. The fronto-central cluster comprised 29 channels 

(minimum nominal F-value=6.11; p=0.0147; maximum 

nominal F=15.89; p=0.0001). The posterior cluster comprised 

49 channels (minimum F nominal value=7.15; p=0.0085; 

maximum nominal F=18.02; p<0.0001). 

We performed additional analyses based on the clusters of 

channels in fronto-central and posterior regions. We found a 

significant interaction effect in three PANSS measures (total 

score, negative and hostility factor) in the posterior region 



13 

 

between the scalp location and symptom severity, which 

indicated that increase in gamma activity with symptom 

severity varied across the channels in the posterior scalp 

location (F=2.38;p<0.0001, F=1.64; p<0.0037 and F=3.86; 

p<0.0001, respectively). Based on these interactions, we further 

investigated which channels in this scalp area contributed 

significantly to the associations, and found that these channels 

were located over the left occipital cortex. Higher symptom 

severity, as measured by the PANSS total score, showed 

significant relationship with increased gamma power in 13 (out 

of 49) channels. We further analysed the five factors of PANSS, 

and found that higher negative and hostility factor scores 

showed significant relationship with increased gamma power in 

11 and 15 (out of 49) channels, respectively. 

We found no significant relationship between gamma power 

and CPZ equivalent dosages. 

 

II. study 

There were no significant between-group differences in terms 

of age (F=2.66; p=0.06), gender (Chi2=2.27; p=0.06) and 

education level (Chi2=0.81; p=0.29). Nonetheless, we used 

these characteristics as covariates to adjust for their potential 

confounding. 
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K-mean clustering algorithm provided four microstate classes 

for both groups where the average global explained variance 

was 77.8% (7.2% s.d.) and 75.6% (9.4% s.d.) for healthy 

controls and patients with schizophrenia, respectively, with no 

significant difference between study groups. In both groups, the 

four microstate topographies were similar to those that were 

previously identified in the literature. Each microstate classes 

characterized by the mean duration, occurrence per second, full 

coverage of time (yielding 12 features), as well as by the 

transition probabilities between classes (which included 12 

more features), altogether a total of 24 features. 

We used ANCOVA with covariates including age, gender, 

education level; moreover, the false discovery rate approach 

was used for statistical adjustment, due to the multiple 

comparisons. We found 14 features that show a significant 

difference between patients with schizophrenia and healthy 

controls. In particular, the occurrence and coverage of 

microstate class A (F=2.9, p<0.05; F=2.37, p<0.05) and D 

(F=2.59, p<0.05; F=2.42, p<0.05) were increased and the 

duration, occurrence, and coverage of the microstate class B 

(F=4.87, p<0.05; F=5.96, p<0.05; F=5.47, p<0.05) were 

decreased in patients with schizophrenia compared to healthy 

controls. We found no difference in the general properties of 

microstate class C. 
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The transition probability to class B (F=5.39, p<0.05; F=5.85, 

p<0.05; F=9.63, p<0.05) was significantly decreased in patients 

with schizophrenia, whereas from class C and D to class A 

(F=3.1, p<0.05; F=3.23, p<0.05) and from class A and C to 

class D (F=2.97, p<0.05; F=2.75, p<0.05) were significantly 

increased in patients with schizophrenia compared to healthy 

controls.  

In the factor analysis, 3 factors achieved an eigenvalue that 

exceeded the a priori preset threshold of 1. The 3 factors 

contained 22 variables. Each factor was named based on the 

variables that the factor comprised (“A”, “B” and “CD” 

factors). In the canonical analysis, the variables belonging to 

each factor were replaced by one variable, therefore we were 

able to characterize the subjects with 3 variables, which were 

used in SVM. 

Our classification model was able to differentiate patients with 

schizophrenia from healthy controls with greater accuracy than 

random classification (mean AUC = 0.813, 95% CI = 0.812-

0.814), as the AUC was larger than 0.5 (which would be in a 

model with randomly classification). 

We used the three canonical variables for the classification. 

ROC curve analysis was used to delineate the potential 

diagnostic utility of the feature set. We achieved the best AUC 

with a value of 0.84 (accuracy: 82.7%, sensitivity/specificity: 
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82.67%/81.43%). The mean accuracy and the standard 

deviation for the 100 repetitions of CV was 81.82% (SD=0.95), 

while the mean sensitivity and specificity were 81.34% 

(SD=0.67%) and 79.02% (SD=1.63%), respectively. 

To assess the impact of feature selection, we conducted a further 

analysis by including all features from all factors (i.e., 22 

features) in SVM for classification purposes. The highest AUC 

value that was achieved was 0.81 (accuracy: 78.7%, 

sensitivity/specificity: 76%/81.4%). The mean accuracy and the 

standard deviation for the 100 repetitions of CV was 75.06 % 

(SD=1.36), while the mean sensitivity and specificity were 

70.81% (SD=2.07%) and 79.61% (SD=1.46%), respectively. 

Thus, with our feature selection algorithm, the SVM approach 

yielded slightly higher AUC and accuracy than the analysis 

which was based on all features from factors. Sensitivity 

increased markedly (from 70.81% to 81.34), while specificity 

showed less increase (from 79.61% to 79.02%) as compared to 

the results that were based on the full feature set (all features 

from factors). 
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CONCLUSIONS 

The two studies presented in the dissertation are related to the 

neurobiological abnormalities in schizophrenia summarized in 

the literature review and the disease models based on them. 

Overall, our results are consistent with literature data and 

confirm the existence of cerebral network dysfunction in 

schizophrenia. There is a close relationship between resting 

networks and task-specific networks, hence impairment of 

resting networks may be associated with altered perceptual, 

cognitive, and memory functions. 

The change in gamma activity identified in the first study 

indicates differences in gamma oscillations in the cortex. The 

consequence of the alteration may lead to a loss of 

synchronization of the networks over time, which may result in 

information distortion and thereby impairment to the affected 

function. In frontal regions, aberrant resting gamma 

performance may be the basis for neurocognitive abnormalities 

in schizophrenia. Parietal regions, together with frontal areas, 

perform hetero-modal association tasks that are impaired in 

schizophrenic patients. In the occipital areas, increased gamma 

can be interpreted as cortical noise, which affects visual 

perception processes, and it is known that disturbed gamma 
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oscillations have been observed in patients with schizophrenia 

in the visual Gestalt paradigm. 

In the second study, we used the characteristics of EEG 

microstates in a machine learning model to classify 

schizophrenic patients and healthy controls. Differences 

identified on the basis of the microstate characteristics proved 

to be sufficient for good accuracy in classification. Several 

correlations between microstates and resting networks have 

been identified in the literature. Differences in micro-states may 

indicate impairments in the dynamics and temporal alignment 

of brain networks. Network damage, in turn, can lead to 

impairment in terms of functionality. 

The results of the two studies may indicate disturbances in the 

functioning of brain networks. While gamma activity is a 

measure of the synchronous activity of networks, the 

characteristics of microstates provide information about the 

structural and dynamic aspects of several brain subnets. 

Furthermore, they may help expand the machine learning model 

used in the second study, i.e. to develop a more effective 

classification model using the differences measured in gamma 

activity. 

Differences in neurotransmitter systems detailed in the 

literature review lead to damage to synaptic network 

connections, which can lead to differences in macroscopic 
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brain-networks. Our studies offer additional data for the 

dysconnectivity hypothesis of schizophrenia and for theories 

based on the disruption of the reduced signal-to-noise ratio and 

the stimulus-inhibitor balance.   
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